
Virtual Machine Migration

Energy Consumption

Simulation in Cloud Computing

by

Vincenzo De Maio

submitted to the Faculty of Mathematics, Computer Science

and Physics of the University of Innsbruck in partial fulfillment

of the requirements for the degree of doctor of science

advisor: Assoz.-Prof. Priv.-Doz. Dr. Radu Prodan,

Institute of Computer Science,

University of Innsbruck.

ii

iii

Certificate of authorship/

originality

I certify that the work in this thesis has not previously been submitted

for a degree nor has it been submitted as part of requirements for a degree

except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I

have received in my research work and the preparation of the thesis itself has

been acknowledged. In addition, I certify that all information sources and

literature used are indicated in the thesis.

Vincenzo De Maio, Innsbruck on the August 29, 2018

iv

To my family, a safe harbour in the storm.

To all the nice people I met in Innsbruck, whose friendship has been an

unconquerable summer in those cold winters.

Contents

1 Introduction 1

1.1 Motivation . 1

1.1.1 VM consolidation . 2

1.1.2 VM migration . 3

1.1.3 Network transfer . 4

1.1.4 Simulation framework 5

1.2 Objectives . 6

1.2.1 VM consolidation . 6

1.2.2 VM migration . 7

1.2.3 Network transfer modelling 7

1.2.4 Simulation . 8

1.2.5 Summary . 8

1.3 Outline . 9

1.4 Related Work . 10

1.4.1 Data centre modelling 10

1.4.2 Network transfer modelling 11

1.4.3 VM migration modelling 12

1.4.4 Cloud simulators . 13

2 Model 15

2.1 Introduction . 15

2.2 Definitions . 15

2.2.1 Data centres . 15

2.2.2 Physical machine . 17

v

vi CONTENTS

2.2.3 System load model . 18

2.2.4 Virtualization . 19

2.2.5 Virtual machine . 21

2.3 VM migration . 22

2.3.1 Preliminaries . 22

2.4 Energy model . 29

2.4.1 CPU power model . 31

2.4.2 Network transfer power model 32

2.4.3 Disk power model . 35

2.4.4 VM migration model 35

2.5 Runtime modelling . 43

2.6 Summary . 45

3 Experimental methodology 47

3.1 Introduction . 47

3.2 Motivation . 47

3.3 Code instrumentation framework 48

3.4 Network benchmarking . 50

3.4.1 Experimental design 51

3.5 VM migration benchmarking 54

3.5.1 Experimental design 54

3.6 Hardware/software configuration 60

3.6.1 Network benchmarks experimental setup 60

3.6.2 VM migration experimental setup 62

3.7 Summary . 65

4 Network transfer modelling 67

4.1 Introduction . 67

4.2 Network hardware and software stack 67

4.3 Experimental results . 69

4.3.1 BASE . 69

4.3.2 PSIZE . 71

4.3.3 n-UPLEX . 73

CONTENTS vii

4.3.4 PATTERN . 75

4.3.5 Model evaluation . 76

4.3.6 Using network transfer model for VM migration 77

4.4 Discussion . 78

4.5 Summary . 79

5 VM migration modelling 81

5.1 Introduction . 81

5.2 Experimental results . 81

5.2.1 CPULOAD-SOURCE 82

5.2.2 CPULOAD-TARGET 83

5.2.3 MEMLOAD-VM . 85

5.2.4 MEMLOAD-SOURCE 85

5.2.5 MEMLOAD-TARGET 86

5.2.6 Regression analysis . 87

5.3 Comparison . 88

5.3.1 Non-live migration . 91

5.3.2 Live migration . 92

5.4 Summary . 92

6 Integration into simulators 95

6.1 Motivation . 95

6.2 Model evaluation . 96

6.2.1 Regression modelling 96

6.3 Simulation framework . 97

6.3.1 GroudSim . 97

6.3.2 DISSECT-CF . 98

6.3.3 DISSECT-CF energy extensions 100

6.3.4 GroudSim/DISSECT-CF 103

6.4 Evaluation . 104

6.4.1 Benchmarking results 104

6.4.2 Simulation validation 105

6.4.3 Simulation results . 106

viii CONTENTS

6.4.4 CloudSim comparison 106

6.5 Summary . 110

7 Conclusion and future work 113

7.1 Contributions . 113

7.1.1 Energy model . 113

7.1.2 Network modelling . 114

7.1.3 VM migration modelling 114

7.1.4 Integration into simulation 115

7.2 Future work . 115

7.2.1 Virtualization . 115

7.3 Discussion . 117

List of figures 118

List of tables 119

Bibliography 122

Abstract

Energy consumption has become a significant issue for data centres. For

this reason, many researchers currently focus on developing energy aware

algorithms to improve their energy efficiency. However, due to the difficulty

of employing real data centres’ infrastructure for assessing the effectiveness of

energy-aware algorithms, researchers resort on simulation tools. These tools

require precise and detailed models for virtualized data centres in order to

deliver accurate results. In recent years, many models have been proposed,

but most of them either do not consider energy consumption related to virtual

machine (VM) migration or do not consider some of the energy impacting

components (e.g. CPU, network, storage). In this work, I focus on increasing

the accuracy of existing energy prediction models, by providing the research

community with a more accurate data centre energy consumption simulator.

To this end, I focus on designing an accurate model of energy consumption

of VM migration.

First, I present a comparative analysis of the energy consumption of the

software stack of two of today’s mostly used network interface cards (NICs)

in data centres, Ethernet and Infiniband. I carefully design for this pur-

pose a set of benchmark experiments to assess the impact of different traffic

patterns and interface settings on energy consumption. Using these bench-

marking results, I derive an energy consumption model for network transfers

and evaluate its accuracy for a VM migration scenario. I also propose guide-

lines for NIC selection from an energy efficiency perspective for different

application classes.

Then, I show that omitting VM migration and workload variation from

the models could lead to inaccurate consumption estimates. For this rea-

ix

x CONTENTS

son, I propose a new model for data centre energy consumption that takes

into account the previously omitted model parameters and provides accurate

energy consumption predictions for paravirtualised VMs running on homo-

geneous hosts. The new model’s accuracy is evaluated with a comprehensive

set of operational scenarios. With the use of these scenarios I present a

comparative analysis of my model with similar state-of-the-art models for

energy consumption of VM migration, showing an improvement up to 24%

in accuracy of prediction.

Finally, I propose a new model for data centre energy consumption that

takes into account the previously omitted components and provides more

accurate energy consumption predictions compared to other state-of-the-art

solutions for paravirtualized VMs. I evaluate this model’s accuracy in a

comprehensive set of scenarios implemented in the DISSECT-CF [1] simu-

lator. With the use of these scenarios, I present a comparative analysis of

this model with a similar state-of-the-art simulator. This analysis reveals a

significant up to 42.5% improvement in accuracy for modelling data centre

energy consumption.

Chapter 1

Introduction

1.1 Motivation

Cloud computing has recently emerged as a paradigm where users rent com-

putational power, hosted by data centres of specialised providers, accord-

ing on their occasional needs. To host such computational power, Cloud

providers are interested in maximizing their profit, either by selling more

computational power or by reducing the management and ownership costs.

Among these costs, energy consumption is becoming increasingly more im-

portant for Cloud providers. For this reason, Cloud providers are currently

putting increasing efforts in reducing energy consumption of their data cen-

tres.

Energy consumption of data centres can be reduced either by employ-

ing energy efficient hardware, or by improving Cloud infrastructure resource

management to increase hardware utilisation. Due to the difficulty of up-

grading the existing hardware in Cloud infrastructures, Cloud providers are

more interested in energy efficient resource management. This encloses many

different techniques, such as employing energy-saving features already imple-

mented in the physical machine (PM), increasing hardware utilisation and

using virtual machine (VM) consolidation.

Among these techniques, the latter allows mapping of the data centre’s

VMs on a reduced subset of PMs, in order to allow the data centre manage-

1

2 CHAPTER 1. INTRODUCTION

ment to (1) increase utilisation of this subset of PMs and (2) increase energy

efficiency of the data centre by shutting down PMs that are not used. Such

technique is widely used in modern data centres, as it does not involve any

modification on the used hardware (e.g. upgrading the existing hardware,

network reconfiguration).

Since this technique is widely used for energy saving in data centres,

research in this area may be of interest not only for academia but may have

also an impact on industry, due to the interest of Cloud providers in reducing

energy consumption of data centres. Research may cover different topics,

such as prediction models for energy consumption of VM consolidation and

of the benefits that may bring on the long term.

In this work, I focus on providing a simulation framework for the evalu-

ation of VM consolidation algorithms. The main target of this study is the

VM migration, which is the main activity involved during the VM consoli-

dation process. Other works have provided a model of energy consumption

of VM migration, but at the time of writing, none of them has investigated

the impact of VM migration on actors involved in it, such as VMs, PMs and

network hardware.

Therefore, in this work I perform an extensive study of VM migration,

starting from the energy consumption for transferring VMs over the network,

arriving to the study of VM migration energy consumption and its impact

on data centre and how to use this model in a Cloud simulation framework.

In the next sections, I describe the main motivations of this work, the

problems I found and the way I addressed each one of them, as well as a

discussion of the improvements that my work brought to the state-of-the-

art.

1.1.1 VM consolidation

According to [2], PMs in data centres are often underutilised. Therefore,

improving the utilisation of PMs can improve energy efficiency of data cen-

tres. With VM consolidation, it is possible to either (1) increase utilisation

of data centre’s PM and (2) increase energy efficiency, allowing the data cen-

1.1. MOTIVATION 3

tre management to shut down the unused PMs. VM consolidation is often

described as a vector bin-packing problem [3]. As this problem is known

to be NP-complete, its approximated optimal solution is usually obtained

through heuristics. There may be different optimization objectives, such as

resource utilisation [4, 5, 6, 7, 8], network overhead [9, 10] and energy con-

sumption [11, 12]. Concerning energy consumption, VM consolidation needs

especially to (1) understand when is the right time to perform a consolidation

(e.g. detecting underutilisation of servers), (2) understanding which remap-

ping improves the current energy efficiency on a long term and (3) determine

the energy consumption of VM consolidation. While for the first one soft-

ware monitoring tools are available, the others are very hard to solve, due to

the heterogeneity of architectures inside the data centres and the dynamism

of its environment, that makes energy consumption predictions difficult on

the long term. In this work, as a step towards this challenging goal, I focus

on improving the accuracy of these predictions. To this end, I focus on one

of the main activities of VM consolidation: VM migration. As this activity

is widely used in VM consolidation, increasing the accuracy of its prediction

increases also prediction of energy consumption of VM consolidation, with

great advantages for the scientific community working in distributed systems.

1.1.2 VM migration

In order to assess whether a new mapping of VMs is beneficial energy-wise,

prediction models are needed for their energy consumption. Such models

should take into account all actors (e.g., VMs, PMs, network hardware)

and activities (e.g., VM migration, powering off PMs) of VM consolidation.

Among all activities, VM migration [13] is one of the most widely used, as

it provides the capability of moving the state of running VMs between PMs,

thus allowing to dynamically adjust the data centre’s workload.

However, VM migration has an energy consumption, as shown by [14, 15].

This consumption must be considered when calculating energy consumption

of VM consolidation. Despite having a considerable impact on energy con-

sumption [16], this activity has usually not been taken into account when

4 CHAPTER 1. INTRODUCTION

performing energy consumption simulations of data centres.

In recent years, several works modelled the energy impacts of VM mi-

gration. For example, [17, 18, 19, 16] proposed different models for VM

migration energy consumption. Other works tried to consider VM migration

when performing dynamic VM consolidation, such as [20, 21, 22]. However,

all these works focused only on VMs’ workload and have not considered other

actors that are relevant for the VM migration process. In fact, VM migration

is an activity that involves many different actors, and each one has a differ-

ent impact on its energy consumption. For this reason, there is significant

room for improvement in current VM migration energy consumption mod-

els. In fact, different data centre actors are involved in VM migration, like

the PMs performing it, the network infrastructure over which the transfer is

performed and so on. For this reason, it is reasonable to assume that each

time a VM migration is issued, each of these actors is affected energy-wise.

Therefore, my goal is to answer the following questions: How much is the

impact of VM migration on energy consumption of data centres? How much

is energy consumption of VM migration affected by each one of these actors?

1.1.3 Network transfer

A large amount of research [23, 24, 25] already focused on reducing energy

consumption in data centres and improving their efficiency. Many of these

works focus on specific hardware components such as CPUs, storage, mem-

ory, but few of them focus on network transfers. In the networking area,

existing works investigate energy-saving techniques like sleeping and rate

adaptation [26] with focus on routers and switches [27] or on MPI parallel

scientific applications [28, 29]. Several works like [30] focused on the energy

consumption of network transfers in message passing models, but few investi-

gated it at the software level, comprising their complete stacks with different

power characteristics and the way they impact the energy consumption of ap-

plications. Since data centres often install multiple network interface cards

(NICs) on each node, investigating and comparing them at the software level

has high potential to enhance the energy efficiency of applications on Cloud

1.1. MOTIVATION 5

infrastructures.

The network has great importance in this work, for two reasons: first,

remapping VMs on different PMs causes also a remapping of the network

communications between the VMs, with a remarkable impact on energy con-

sumption of network devices. Moreover, as moving the state of the VMs is

done over the network, it is not possible to provide a precise model of VM

migration without providing a model of energy consumption of network trans-

fers. Such modelling is made more difficult by the fact that in data centres

there are different types of network hardware that are employed, and each

one of them may need different modelling for energy consumption. Moreover,

measuring energy consumption of the hardware involved in a network trans-

fer (e.g. NICs, routers, switches) is not trivial. For this reason, despite of

its impact on data centre energy consumption, very few work tried to model

energy consumption of network transfer, or tried to identify the factors that

are more impacting for energy consumption. In my research, I attempt to

answer the following questions: How much the network transfers impact on

data centre energy consumption? What are the most energy impacting fac-

tors for network transfers? Will the use of different network devices have an

impact on energy consumption of VM migration?

1.1.4 Simulation framework

Another important area of interest for this work is the simulation of the

Cloud. Due to the difficulty of managing and accessing the internals public

Cloud infrastructures, many scientists in the distributed systems community

resort on Cloud simulators to validate their results. Since most of the ex-

isting research in the energy aware Cloud computing area is related to VM

consolidation and VM migration, increasing their modelling accuracy in ex-

isting simulators can be of big interest for the research community, allowing

researchers to provide more effective energy-aware consolidation algorithms

and to test them in a simulation environment that is closer to the real world.

Such model should be able to target the complexity of the Cloud and able to

consider (1) different architectures, (2) different data centre network/topolo-

6 CHAPTER 1. INTRODUCTION

gies and (3) different VM migration scenarios. Some efforts in this direction

have been already put by the existing Cloud simulators. For example, in

recent years, several simulators implemented models for VM migration. For

example, the work in [31] added a model to the SimGrid [32] simulator that

focuses on the migration’s performance overhead, but not the energy con-

sumption stemming from it. Other efforts like [33] provide limited models

that, for example, consider only CPU load or network transfers. Moreover,

many simulators assume that VM migration does not consume any energy

and omit the modelling of its effects on data centre’s performance, despite

being widely used. For this reason, adding an energy consumption model

of VM migration is a significant improvement to the current state-of-the-

art in data centre energy consumption simulations. Therefore, because of

these problems and the ones that have been highlighted in the previous sec-

tions, there is big room for improvement in existing simulators. Therefore,

I attempt to answer to the following questions: How much is it possible to

improve the current state-of-the-art in Cloud simulations by considering the

parameters identified in this work? What is the benefit of doing this?

1.2 Objectives

In this section I describe the main objectives of this work.

1.2.1 VM consolidation

The main objective of this work is to provide a theoretical and software

framework to develop more accurate energy-aware consolidation algorithms.

To this end, I identify which activities are mostly involved in the VM consol-

idation process, as well as the actors that are impacting its energy consump-

tion. Then, I provide a model for energy consumption of these activities, that

will help researchers in predicting energy consumption of a VM consolida-

tion process. Finally, such models will be implemented in a Cloud simulator,

to be used for evaluation of energy-aware VM consolidation algorithms. I

describe each point in detail in the following sections.

1.2. OBJECTIVES 7

1.2.2 VM migration

I aim at building a energy consumption model for VM migration. Such model

should take into account both PM’s overcommitment and different types of

workloads, running on each actor involved in VM migration. To this end,

I perform an investigation on the actors involved in the VM migration and

see (1) how much their load impacts energy consumption of VM migration

and (2) how much VM migration impacts their energy consumption. From

this initial analysis, I build a model for VM migration and find the model

coefficients through well-known machine learning techniques. To use machine

learning techniques, I need real measurements to build a training and test set

for the model. I collect them by designing benchmarks, mimicking real world

applications and stressing different actors and hardware components, like

CPU and memory. Then, I measure energy consumption of VM migration

on different hardware and use these measurements as input for the selected

machine learning algorithm. Afterwards, I evaluate the accuracy of my model

on different hardware and compare it to the state-of-the-art, showing that

my approach increases the accuracy of prediction given by existing models.

1.2.3 Network transfer modelling

I have two objectives in the area of network transfer modelling. First, I want

to give an in-depth analysis on the energy impacting factors for data transfers

over network. Such investigation will help in understanding which kind of

data transfer is more suited to a given interface energy-wise, allowing users to

choose the network interface that is best suited for the application he or she

plans to run. To this end, I develop a set of benchmarks mimicking different

types of network transfers and execute them on different network interfaces.

Each benchmark aims at investigating the effects on energy consumption.

While executing them, I measure energy consumption of the PMs and see if

the identified factor needs to be considered in the modelling, by looking at

their impact on energy consumption.

Second, I plan to build a model of energy consumption of network trans-

fer. Such model should be able to predict the energy consumption on both

8 CHAPTER 1. INTRODUCTION

network interfaces I targeted in my study and work with different types of

network transfers. Since in data centres an increasingly bigger amount of data

is transferred over the network, having such a model for energy consumption

of network transfer can help to increase accuracy of energy consumption pre-

diction in data centres. I develop this model starting from measurements

collected during the benchmark execution in the DPS Cloud and using su-

pervised learning techniques on the measured data.

1.2.4 Simulation

Once I build my network transfer model, I want to use it to improve accu-

racy of existing Cloud simulators. Because of the difficulty in managing and

accessing data centre infrastructure, many researchers in the distributed com-

puting community resort to use Cloud simulators. However, such simulators

either do not provide adequate support for prediction of energy consumption

or there is big room for improvement in the accuracy of their predictions. I

plan to extend an existing simulator with my model for network transfer and

my model for VM migration. Afterwards, I plan to evaluate the accuracy

of the modified simulator with the state-of-the-art, showing that by using

my models for network transfer and VM migration I am able to improve ac-

curacy of existing simulators, bringing an important advantage to scientific

community.

1.2.5 Summary

These objectives aim at improving accuracy of data centre simulations and

to provide tools to support energy saving decisions in data centres. Since the

target scenario of my work is VM consolidation, I focus on its main activity,

that is VM migration. To build a model for VM migration, I first model it

as a network transfer, therefore building and evaluating a model for energy

consumption of network transfers. Afterwards, I investigate the parameters

that are impacting the most the energy consumption of VM migration and

build on the top of my network transfer model an energy consumption model

for VM migration. This model takes into account not only the network

1.3. OUTLINE 9

transfer part, but also different other parameters that are of interest for

its modelling. Afterwards, I implement my models into an existing Cloud

simulator and show that using them the accuracy of energy consumption

prediction increases. At each step, I perform a detailed analysis on how the

proposed model is able to provide more accurate estimations compared to the

state-of-the-art. Therefore, I carefully evaluate the accuracy of my model by

comparing it with real world measurements, and, wherever possible, with

existing energy models, to show an improved accuracy.

1.3 Outline

In this section I describe the organisation of my work.

In Chapter 2 I introduce the theoretical foundations of this work and

describe all the important terms and technologies used in the thesis. I define

all the actors involved in the VM migration and describe the different VM

migration approaches considered in this work and the way I model it. I

also describe the network transfer model and the parameters that are more

energy-impacting for its consumption.

Afterwards, I describe in Chapter 3 the benchmarking methodology used

in this work. First, I describe the framework I employed to collect the energy

measurements that are necessary for my work. Then, I describe the appli-

cations used on the PMs to simulate different types of load, both for VM

migration and network transfers.

Then, I perform in Chapter 4 the validation of my network transfer model

by comparing its predictions to the real measurements and showing its ac-

curacy. Then, I use the same model on a small subset of measurements for

VM migration and discuss the accuracy of this model also in this scenario.

Afterwards, I validate in Chapter 5 my VM migration model using the

measurements collected with the benchmarking methodology described in

Chapter 3. I describe how I use these measurements as training and testing

set for linear regression to build a VM energy consumption model. I compare

the accuracy of this model with other existing models, showing that my model

is able to increase the accuracy of prediction by 24%.

10 CHAPTER 1. INTRODUCTION

Chapter 6 describes how my findings are integrated in a simulation frame-

work. First, I show that the GroudSim/DISSECT-CF simulation framework

is the most suited to perform my extensions. Therefore, I describe the sim-

ulation framework in detail, explaining how I extend it to include my work.

Then, I show the correctness of this implementation by comparing results

obtained with my simulation with the real world measurements. Afterwards,

I perform a comparison with CloudSim state-of-the-art simulator, showing

that my model can provide an improvement of up to 45.6% in accuracy of

energy consumption prediction.

Finally, I conclude my thesis in Chapter 7, describing its contributions

and outlining the future work.

1.4 Related Work

In this section I present the related work, divided according to the research

areas that are covered in this work.

1.4.1 Data centre modelling

In this section I describe the related work about implementing an accurate

Cloud simulator. A Cloud simulator should provide simulations at three level:

the physical level, concerning the PMs and the network infrastructure. Then,

the virtualization layer above them that provides additional functionalities

(VM migration, provisioning and placement). I analyse all of them in details

next.

PM modelling

In this section I outline how existing simulators handle the simulation of the

physical infrastructure. One of the first works trying to understand energy

consumption of data centre is [34] but do not try to model it. Most of the

existing work simulate the behavior of physical infrastructure according to

CPU, memory, storage and network. I analyse each one of them in detail.

1.4. RELATED WORK 11

Concerning CPU modelling, existing papers either focus on a specific CPU

architecture [35, 36, 37] or assume a linear relationship between CPU usage

and energy consumption [38, 39], which may lead to inaccurate results [40].

Moreover, most of this models do not consider the virtualization overhead,

making it not suitable for virtualized data centre.

Concerning memory modelling, works like [41, 42] provide simulations of

DRAM behaviour, but neither the virtualization overhead nor the energy

consumption is considered. Works like [43] provides modelling of memory

resource management in VMWare ESX Server, but no energy modelling is

provided. Similar works like [44, 45] provide insights about memory man-

agement, respectively for Xen and KVM hypervisor.

Storage energy modelling has been provided by [46] and other similar

works like [47, 48, 49]. These works, however, do not consider the virtualiza-

tion overhead, neither distributed storage systems.

Data centres network performances has been instead modelled in works

like [50]. Other works like [51] propose data centre network simulators, with-

out considering energy consumption. Works like [52, 53] target how to im-

prove energy efficiency of networking in data centres, while works like [54, 55]

try to model energy consumption of network transfers, but do not use this

model in simulations.

Works like [56, 57, 58] provide a joint approach to data centre modelling.

However, all these works have the problems previously outlined. Moreover

several features provided by the virtualization layer available in data centres

are not modelled. I analyse them in details in the following sections.

1.4.2 Network transfer modelling

Energy aware networking

Many works exploit network awareness to save energy, with focus on routing

equipment and algorithms: In [59] energy-aware allocation of resources in

Clouds considering network topology is investigated, while [60] proposes a

network power manager which dynamically manages routers to reduce en-

ergy consumption and [61] proposes a model for energy-aware routing. The

12 CHAPTER 1. INTRODUCTION

paper [62] investigates client-centered techniques for energy efficient commu-

nication on IEEE 802.11b networks, which interest more wireless communica-

tion than data centers. Complementary to these works, I focus on the energy

consumption from the perspective of software application, including not only

the NICs, but also the other components involved in network transfers.

Network energy modelling

One of the first studies on network energy consumption focuses on energy

consumption of routers, switches and hubs [63] but does not take into account

energy consumed by the NICs. Many works like [27, 64] provide models for

router power consumption, but do not consider the power consumed by NICs

for network transfers.

Other works like [65], [66] provide models for the energy consumption

of wireless network interfaces, which are of interest to mobile devices rather

than data centres. [67] and [68] propose other energy consumption models,

the former for optical IP networks and the latter for network-on-chip routers.

In [69] a energy consumption model for network equipment and transfers for

large-scale networks, based on transfer time and bandwidth, is introduced.

In this thesis I propose a complementary model for network transfers con-

sidering different NICs and more parameters. Works like [26] consider only

transfer time when building a model for network transfers. In this work,

other additional factors are considered.

1.4.3 VM migration modelling

Live VM migration has been proposed by [13] for the Xen hypervisor. Since

then, it has been implemented in many popular hypervisors, such as Xen,

KVM and VMWare. Many works like [70, 71, 72, 73] exploit live VM migra-

tion to perform energy-aware VM consolidation. However, energy consump-

tion of VM migration is not taken into account in these works. Other works

like [74, 75, 76] focused on the cost of live migration for Cloud data centres,

but considered only performance and did not take energy consumption into

account. Further works like [31] implemented a model for VM migration in

1.4. RELATED WORK 13

a Cloud simulator, but do not provide models for its energy consumption.

Recent works like [77] consider the time of live migration, but this study con-

sider only CPU-intensive workloads and does not take energy into account.

Other works like [78] propose a probabilistic approach to quantify the cost

of VM live migration, but this cost does not take energy into account. First

investigations about energy consumption of VM migration have been done

by [79]. One of the first works that modelled time, energy and performance

of live migration at the same time is [17], which identified a relationship

between network bandwidth and energy consumption of Xen live migration.

This work, however, considers only the load running on the migrating VM

and makes the simplistic assumption that source and target host have the

same energy consumption for VM migration. A similar work has been done

for KVM live migration by [18]. Another model has been proposed by [19],

but this model considers only CPU load.

In this work, I consider the workload of each actor involved in the migra-

tion process and extract a more accurate model for both live and non-live

VM migration.

1.4.4 Cloud simulators

In this section I describe the state-of-the-art simulators and try to outline

their pros and cons.

A Cloud simulator should be able to simulate different levels of a Cloud:

the infrastructure layer and the data centre management layer.

At the infrastructure level, a simulator should be able to simulate both

the (1) PM behaviour, with all its subsystems and (2) the behaviour of the

virtualization layer, added to support VMs or containers. At this layer also

energy consumption simulations should be added, to address the growing in-

terest of the distributed systems research community in energy consumption.

At the Cloud management layer, further activities, like VM placement, VM

migration and VM provisioning, as well as physical infrastructure manage-

ment operations like shutting down/turning on the PM. CloudSim [33] is

the most used and cited simulator of different components of the data cen-

14 CHAPTER 1. INTRODUCTION

tre infrastructure, including internal networking and energy consumption.

Moreover, it does not take into account several important parameters in its

VM migration model such as overcommitment and memory dirtying rate.

SimGrid [32] provides a scalable and fast simulation framework of Cloud

data centres, Grid and peer-to-peer systems, including a model for simulating

VM migration [31]. However, it provides no energy consumption model for

VM migration (at the time of writing).

GreenCloud [80] offers packet-level simulations for energy-aware Cloud

computing data centres. It provides the capability of separately modelling the

energy consumption of all data centre components, including CPU, network,

and storage. However, its CPU model is based on Xeon processors only and

no energy consumption model for live migration is provided.

DCSim [81] provides fine-grained data centre simulation at different levels

of abstraction considering networking and energy consumption models, with

no support for VM migration.

GroudSim [82] is the simulation backend of the ASKALON system [83]

that, due to its integration with the DISSECT-CF [84] Cloud infrastructure

simulator, provides models for energy consumption of data centre compo-

nents, as well as for VM migration and networking.

iCanCloud [85] provides an easily extensible simulation framework for In-

frastructure as a Service (IaaS) Clouds. It provides the possibility to simulate

the behaviour of CPU, memory, storage and network subsystems. However,

it does not offer the possibility of simulating energy consumption of a data

centre at the time of writing.

Chapter 2

Model

2.1 Introduction

In this section I introduce all the terms that are necessary to understand

the presented topics. First I give definitions of the actors that are important

for this work. Then, I focus on VM migration process, describing the actors

involved in this activity and its power characteristics. After this analysis, I

design a model of data centres energy consumption that takes into account

all the hardware components affecting it. Then, I design a model for net-

work transfers, from which I derive a model for VM migration. The model

validation is described in Chapters 4 and 5.

2.2 Definitions

In this section I describe the models of the data centre components that are

related to this work.

2.2.1 Data centres

Data centres are the cornerstone of Cloud computing. A data centre is a

facility hosting the computational power that is rented to the users of the

Cloud. Data centres are highly dynamic environments, therefore their con-

figuration may vary over time, according to the amount of load and the

15

16 CHAPTER 2. MODEL

available resources. Therefore, a data centre can be seen as a set D defined

as follows:

Definition 1. A data centre, is a vector D,

D = [H,V ,V∗(H),N], (2.1)

where:

• H is the set of PMs inside the data centre D during its whole lifetime.

PMs are defined in Definition 3;

• V is the set of VMs inside the data centre D during its whole lifetime.

VMs are defined in Definition 5);

• V∗(H) is a set of pairs (v, h) defining the initial allocation of the VMs

on PMs, where v ∈ V and h ∈ H. I can define it as
⋃
h∈H V∗(h), defined

in Definition 3;

• N is the set of all the network switches inside the data centre. Switches

are defined in Section 4).

During the data centre’s lifetime, modifications on the data centre state

may occur (e.g. startup/shutdown of VMs and PMs, VMs’ migrations).

Because of many factors, such as data centre energy saving policies, hardware

failures, and users’ demand, the amount of available VMs at a given instant

of time may vary. Finally, each time a VM consolidation is performed, the

mapping of VMs to PMs changes. Therefore, I define the state of the data

centre D at the instant t, namely D(t), as follows:

Definition 2. The state of a data centre D at the instant t is defined as

a vector D(t),

D(t) = [H(t),V(t),V∗(H, t)], (2.2)

where:

• H(t) is the set of PMs that are available at instant t. Clearly, H(t) ⊆
H;

2.2. DEFINITIONS 17

• V(t) is the set of VMs that are running at instant t. Clearly, V(t) ⊆ V;

• V∗(H, t) is a set of pairs (v, h) defining the allocation of the VMs on

PMs at time t. Clearly, h ∈ H(t) and v ∈ V(t).

In the next section, I define the PMs characteristics.

2.2.2 Physical machine

A PM is an hardware device, such as a personal computer or any other com-

puting device. PMs are used to host the VMs that execute the computation.

Resources offered by the PMs are shared between all the VMs that are hosted

by the PM. The sharing of the resources is managed by the hypervisor, a pro-

gram running on the PM operating system (OS), or even a modified version

of a PM’s OS (e.g. Xen), that is responsible for allowing the different OSs

running on the VMs to use the PM’s resources. A PM can have a diverse

amount of hardware resources. In this work I mostly focus on CPU, RAM,

storage and network. For this reason, a PM h ∈ H can be seen as a vector

of its amount of resources and the set of VMs that are allocated on it.

Definition 3. I define a physical machine h as follows:

h = [CPUmax(h), RAMmax(h), BWmaxio (h), BWmaxnet (h),V∗(h), s], (2.3)

where:

• CPUmax(h) is the maximum CPU load that is possible to allocate to host

h;

• RAMmax(h) is the maximum amount of RAM for host h;

• BWmaxio (h) is the maximum I/O bandwidth;

• V∗(h) is the set of VMs that are allocated to host h.

• s is the network switch to which h is connected (see Definition 4).

18 CHAPTER 2. MODEL

From now on, CPUmax(h) is defined in MIPS (Millions of Instructions

Per Second), RAMmax(h) in bytes and the bandwidth in bytes per second. It

must be pointed out also that CPUmax(h), RAMmax(h), BWmaxio (h), BWmaxnet (h) do

not necessarily reflect the amount of CPU, RAM, and bandwidth available

on PM h, because in some cases the data centre may allow overcommitment.

Definition 4. A switch s is defined as:

s = [BWmaxnet (s),H(s),N(s)], (2.4)

where:

• BWmaxnet (s) is the bandwidth of the switch s;

• H(s) is the set of PMs, defining the hosts that are connected to s;

• N(s) is the set of switches, defining the switches that are connected to

s.

Formally, ∃x ∈ H(s) ⇐⇒ switch s connects x and ∃y ∈ N(s) ⇐⇒
switch s connects y. Clearly, H(s) ⊂ H and N (s) ⊂ N .

Concerning the networking, I consider that in modern data centres there

are many types of LAN technologies available. Such new technologies are

different from the typical LAN technologies and offer an higher latency and

throughput, to meet the growing needs of modern Cloud applications. Such

technologies may need to rely on a different physical layer technology, differ-

ent from the typical CSMA/CD used by Ethernet. Among them, the most

successful one is Infiniband, that is based on the RDMA technology. I will

later on describe both technologies in detail.

2.2.3 System load model

I assume that power consumption of each component is proportional to its

load. Therefore, before defining a model for power consumption of each

2.2. DEFINITIONS 19

component, I need to define a model for the load of each component. I

calculate the load of CPU resources as follows:

load cpu(h, t) =
CPU(h, t)

CPUmax(h)
, (2.5)

where CPU(h, t) is the amount of MIPS used by the PM h at time instance t.

I also define the network load as:

loadnet(h, t) =
BWnet(h, t)

BWmax
net (h)

, (2.6)

where BWnet(h, t) is the bandwidth available on host h at the time instance t.

loadnet(h, t) can be seen as a measure of how many bytes are sent/received

over the network at the time t on PM h. Finally, I define the disk load as:

load io(h, t) =
BWio(h, t)

BWmax
io (h)

, (2.7)

where BWio(h, t) is the bandwidth available at the time instance t. loadio can

be seen as a measure of the amount of bytes that are read/written at time t.

2.2.4 Virtualization

Modern Cloud data centres rely on a technology called virtualization. By

virtualization I refer to the creation of a virtual instance of a resource such

as a PM, storage or network. In the Cloud scenario, the resource that is

virtualized is the OS that is running the computation, requested by the users

of the infrastructure.

Virtualization is offered by different softwares, called hypervisors. Cur-

rently, the most used one are Xen [86], KVM [45] eSXi and VMWare server,

used by VMWare [87] virtualization platform. There are different types of

OS-based virtualization services, like:

• Kernel-based virtualization, in which virtualization is provided by ex-

ploiting kernel extensions to the PM’s OS. The VM OS (guest OS)

communicates with the kernel of the PM’s OS, that provides the access

20 CHAPTER 2. MODEL

Hypervisor Kernel-based Hardware-assisted Paravirtualization

KVM 3 7 7

Xen 7 3 3

eSXi 7 3 7

VMWare 7 3 7

server

Table 2.1: Hypervisors summary.

to the underlying hardware.

• Hardware-assisted virtualization, in which the virtualization features

required by the guest OS are provided by hardware extensions. The

guest OS communicates directly with the hardware to obtain what

is needed by the VM. This type of virtualization must be explicitly

supported by the CPU.

• Paravirtualization, in which the hypervisor provides to the guest OS

an API to communicate with the PM’s hardware. The guest OS must

be accordingly modified to exploit the API provided by the hypervisor.

In Table 2.1 I summarize the different type of virtualization according

to the different hypervisors. According to the hypervisor and the type of

virtualization, there is a different type of virtualization overhead, as well as

a different use of physical resources. This results in a different PM’s en-

ergy consumption. For this reason, In my model I also include the power

consumption for managing the virtualization. In this work, I focus on par-

avirtualization, as it ensures the less virtualization overhead at the time of

writing.

There are also two other things to be considered, due to their impact on

both data centre energy consumption and performance: resource overcom-

mitment and VM migration. In this work, I focus mostly on VM migration,

as it has the highest impact in energy consumption of VM consolidation.

However, for defining a VM migration, it is necessary to first define a VM. I

do this in the next section.

2.2. DEFINITIONS 21

2.2.5 Virtual machine

Virtual machines (VMs) are the basic computing entities of Cloud computing,

as they are rented to Cloud users to perform their computation. Each VM

can be either specifically tailored for the user who rents it from the Cloud

provider or an instance of a pre-defined image offered by the provider. A

VM can be customized in terms of different parameters, such as CPU power,

RAM and storage amount as well as the OS that can be executed on it. The

parameters that are relevant for this work are CPU, RAM, network and I/O

bandwidth. Therefore, I define a VM v as follows:

Definition 5. A VM v is a vector

v = [CPUmax(v), RAMmax(v), BWmaxio (v), BWmaxnet (v)], (2.8)

where:

• CPUmax(v) is the maximum CPU available on VM v;

• RAMmax(v) the maximum amount of RAM available on VM v;

• BWmaxio (v) is the maximum amount of storage bandwidth available on

VM v;

• BWmaxnet (v) is the maximum amount of network bandwidth available on

VM v.

The VMs use the resources of the PMs on which they are allocated.

In order to provide the computational resources that are used by the data

centre users, each VM needs to be allocated to a host, namely, being added

to V∗(h, t) (see Definition 3). To be allocated to host h, V∗(h, t) must respect

the following property:

∑
v∈V ∗(h,t)

[CPUmax(v), RAMmax(v), BWmaxio (v), BWmaxnet (v)] ≤

[CPUmax(h), RAMmax(h), BWmaxio (h), BWmaxnet (h)] (2.9)

22 CHAPTER 2. MODEL

which means that the sum of all the CPU and RAM resources of all the

VM allocated to host h must not exceed the CPU and RAM available on

the host. For what concerns networking, I assume that the VMs uses a

portion of the PM’s bandwidth, namely BWmaxnet (v), and that the networking

and connectivity are provided by the PM that hosts v. In modern data

centres is possible also to set virtual networks between VMs, adding another

level of network virtualization, but I do not consider it in this work, as it has

no impact on energy consumption of VM migration.

2.3 VM migration

In this section I provide an overview of the power characteristics of VM

migration. First, I describe the VM migration process and then the actors

involved in this process. Afterwards, I investigate the workloads impacting

the energy consumption of VM migration and finally, I identify the phases

that occur during a migration.

2.3.1 Preliminaries

I provide here a complete discussion of migration process, in order to bet-

ter understand its power characteristics. VM migration is an activity that

changes the state of a data centre D(t), defined in Definition 2. The change

in D(t) is reflected by the modification of the content of the set V∗(H), since

VM migration moves the VM from one PM to another. A VM migration

happens between two PMs, namely the source and the target host (respec-

tively, the one from which the VM migration is issued and the one that runs

the VM after the completion of the VM migration, denoted respectively as S
and T). I define the source host as S and the target host as T . At the time

instant t, S, T ∈ H(t). When migrating a VM v from S to T , it happens

that at an instant t the mapping of the VM v changes from PM S to PM T ,

formally v ∈ V∗(S, t− 1), v /∈ V∗(T , t− 1) and v /∈ V∗(S, t), v ∈ V∗(T , t). In

the next section, I describe how the VM migration can be performed.

2.3. VM MIGRATION 23

VM migration approaches

Although VM migration can be realised in different ways, I focus here on

the most used approaches: non-live migration and live migration. I analyse

them in detail now:

Non-live migration (sometimes referred as suspend-resume migration)

approach consists of: (1) suspending the VM to be migrated, (2) transferring

its state to the target host, and (3) resuming the VM on the target host. This

approach is the least energy impacting, because of the fact that the migrating

VM is suspended during all the time of the migration. For this reason, energy

is consumed just to save the state of the VM on the source host, transfer it

over the network and then resume it on the target host.

Live migration has been proposed to reduce the downtime of the VM

during migration. The idea is to move the state of the VM while the VM is

still running, keeping the state of the VM consistent on both S and T while

performing the migration. There are two types of approaches to perform live

migration: pre-copy live migration and post-copy live migration. I describe

both approaches in the following:

Pre-copy migration proposed by [13] consists of six steps:

1. moving the VM state from source to target host while the VM operates

normally;

2. updating the state of target host with the modifications occurred on

the source during state transfer;

3. repeating step (2) until a predefined termination criteria is reached

(e.g., the size of the VM state difference reaches under a given threshold

or maximum number of updates reached);

4. suspending the VM and transferring its last state changes to the target;

(5) resuming the VM on the target when its state is consistent with

the source;

24 CHAPTER 2. MODEL

5. destroying the suspended VM on source.

This approach reduces the gap in VM lifetimes, ensuring an higher avail-

ability of the VM, but consumes more energy for two reasons. First, the

migrating the VM is still running, thus the migration energy consumption

involves not only the cost of transferring VM state but also the energy con-

sumption of the VM while running. Second, if the state on the source changes

faster than it can be transferred over network to the target, the updates to

the VM’s state has to be continuously transferred, considerably increasing

the VM migration time and, consequently, its energy consumption.

Post-copy migration proposed by [88] consists of five steps:

1. moving the VM CPU state from source to target host. During this

time, VM is suspended;

2. resuming execution of the VM on the target host;

3. sending the VM memory pages to the target host from source host

while the VM is running on the target host;

4. for each page fault experienced on the VM in the target host, actively

pushing the faulty pages from source host to target, concurrently with

step (3);

5. destroying the VM on the source host when all the memory pages have

been transferred.

This approach reduces the VM migration time, it makes possible to run the

VM on the target host without copying all the VM memory pages, like in the

pre-copy migration. However, it may have detrimental effects on the perfor-

mance of the applications running on the VM, as each page fault may result

in a network transfer from source to target host, especially for applications

that continuously update a big amount of memory pages inside the VM.

This may also result in a higher energy consumption, due to the continuous

sending of memory pages over the network.

2.3. VM MIGRATION 25

In this work, I consider both non-live and live migration. For live mi-

gration, I only consider pre-copy migration, as at the time of writing no

commercial hypervisor uses post-copy migration. For this reason, I choose to

focus only on pre-copy migration, as it allows me to validate my results on

real-world implementations offered by commercial products, like Xen. There-

fore, from now on, whenever I refer to live migration, I imply a pre-copy VM

migration.

Actors

After describing the VM migration process and its phases, I identify in this

phase the actors involved in the VM migration process, as detailed in Fig-

ure 2.1. I assume that in each data centre there is a software entity called

consolidation manager that constantly monitors the load of the data centre,

assumption that is common to many works like [89, 90, 91]. This entity may

decide at a certain point to initiate a VM migration. When the migration is

issued, the VM v is migrated over the network from S to T .

At the end of this process, VM is running on the target host. This process

is summarised in Figure 2.1, in which the involved actors are highlighted.

Therefore, I conclude that these are the actors involved in a VM migration:

Consolidation Manager constantly monitors the load of the data centre,

selects the VM to be migrated and the target host, and finally initiates the

migration. Afterwards, it returns to its previous operation.

Migrating VM is a VM v ∈ V , that has to be transferred from S to T ,

while the VM is also expected to be running services used by the customers

of the data centre or the service provider utilising the VM.

Source host is the PM S ∈ H. At this time t, v ∈ V∗(S, t). The source

establishes the initial connection with T through its switch s.

Target host is the PM T ∈ H designated by the consolidation manager

as the destination for the migrating VM (i.e., the host that executes the VM

26 CHAPTER 2. MODEL

after the migration process completes).

Network refers to the underlying communication infrastructure responsi-

ble for connecting the other actors and for supporting the VM state transfer,

namely the set n ⊂ N of data centre switches that are involved in the VM

migration.

In the rest of the thesis I focus only on three of these actors: v, S, and

T . I do not consider the consolidation manager because it does not further

interact with the migration after initiating it. I also ignore the network

infrastructure because it affects the VM migration only at its maximum

utilisation and it can be safely assumed that a VM migration is never issued

when the bandwidth between two hosts is fully utilised, meaning that, if t

is the instant at which VM migration is issued, loadnet(S, t) = BWmax
net (S),

loadnet(T , t) = BWmax
net (T) and loadnet(s, t) = BWmax

net (s)∀s ∈ n. Therefore,

for the network transfer part I use the model of Section 2.4.2, assuming that

the maximum bandwidth is available when the consolidation manager issues

a VM migration.

Figure 2.1: Summary of the migration process.

Migration energy phases

As I discussed in the previous sections, both live and non-live migration go

through different phases that could lead to different energy-wise behaviour for

2.3. VM MIGRATION 27

(a) Non-live migration

(b) Live migration

Figure 2.2: Energy consumption phases of non-live and live migration.

each actor. In this section, I identify those phases of VM migration that differ

from an energy point of view by collecting and analysing instantaneous power

draw traces of a VM migration (see the traces and phases in Figure 2.2).

28 CHAPTER 2. MODEL

Normal execution During this phase, each actor performs its normal op-

eration as there was no migration decision taken so far. For the sake of

simplicity, I ensure a constant energy consumption over this phase so the ac-

quired power traces cannot be accounted for anything else but the migration

process discussed in the later phases.

Initiation This phase starts when the migration is requested by the con-

solidation manager and ends when the target host is prepared to receive the

VM state. In case of non-live migration, the source host experiences a strong

decrease in power consumption because the migrating VM is suspended in

the beginning of this phase. In contrast during live migration, the source

host reaches a new peak for energy consumption because of the preparation

tasks necessary for sending the migrating VM to the target. The target host

shows independent behaviour from the VM migration approach applied. It

experiences peaks in its power draw due to checking of resource availability

and acknowledging to the source that the migration can start.

Transfer During this phase, all the state information of the VM is trans-

ferred over the network from the source to the target host. Compared to

the initiation phase, there is an increase of power drawn introduced by the

exchanged VM state data in both the live and non-live migration approaches.

For live migration, an additional consumption is recorded for the source be-

cause it needs to keep track of the modifications to the VM state. During

this phase, I can notice a sub-phase that I call downtime phase: during this

phase the VM is totally unavailable in both source and target host. It is im-

portant to keep track of the energy consumed in this phase, because during

the downtime no computation is performed by the services residing on the

migrating VM. In the meanwhile, the source is freeing the resource previously

owned by the VM and the target is preparing to run the VM. I expect in

this phase that the most impacting factors is the CPU load, because it has

an impact on the time it takes to run the VM on the target.

2.4. ENERGY MODEL 29

Service activation This phase starts after the VM state is transferred

and ends when the VM is running on the target host. In this phase, the

source host frees the resources that previously belonged to the migrating

VM (please note, before freeing up the resources the source host must shut-

down the migrating VM in case of live migration). The target host instead

runs the VM machine. Finally, each actor returns to the normal execution

phase.

2.4 Energy model

In this section, I describe a generic computing oriented (e.g., it does not

include air conditioning) data centre energy consumption model underneath

my approach, derived from my previous study in [92]. I design this model

by first making it able to predict the instantaneous power consumption of

a server in a data centre, and then extending it with a model for live VM

migration (starting from Section 2.5). This model considers the CPU util-

isation as the main parameter of PMs and extracts a regression model for

it. Although CPU is the most impacting factor according to [93], I also con-

sider network transfers and storage to improve accuracy over existing models

that usually do not consider them, regardless of their impact on the energy

consumption.

The computing oriented energy consumption in a data centre Ed is given

by the integral of its instantaneous power draw Pd(t):

Ed =
∫ tend

tstart
Pd(t) dt, (2.10)

where [tstart, tend] is the interval for which I calculate energy consump-

tion, and Pd(t) is the sum of the instantaneous power draw of the network

infrastructure Pinf (N , t) and the instantaneous power P (h, t) of each PM h

at time instant t:

Pd(t) = Pinf (N , t) +
∑

h∈H(t)

P (h, t). (2.11)

30 CHAPTER 2. MODEL

In the rest of this work, I consider Pinf (N , t) as a constant, as I expect this

power draw to not be of impact for VM migration. Concerning instanta-

neous PM’s power consumption, it is the sum of the consumption of each

of its components. While the consumption of some components (e.g. mem-

ory, PCI slots, motherboard) is constant over time, some other components

consumption (CPU, I/O operations, network) varies depending on the load.

Therefore, I distinguish two parts, Pidle(h, t) and Pactive(h, t):

P (h, t) = Pidle(h) + Pactive(h, t). (2.12)

The idle power Pidle(h) is a constant representing the consumption required

by the machine just to be on. It includes also the power draw of RAM, that

I assumed to be constant. The active power Pactive(h, t) is instead dependent

on the PM subsystems’ load. Its value is comprised between 0 and Pr(h) =

Pmax(h)− Pidle(h), where Pr(h) is the size of the interval of values in which

Pactive(h, t) is defined. Pmax(h) is the maximum power consumption on the

host h. For simplicity, I assume that Pactive is influenced mostly by CPU,

network and I/O operations, as stated by [94], therefore I define it as follows:

Pactive(h, t) = Pcpu(h, t) + Pnet(h, t) + Pio(h, t). (2.13)

Where Pcpu(h, t) is the power draw of CPU, Pnet is the power consumption

of network and Pio is the power consumption of disk operations, that are

the components identified in the definition 3. As energy consumption is the

integral of power draw, I obtain the active energy consumption of host h, Eh

in the following way:

Eactive(h) =
∫ tend

tstart
Pactive(h, t) dt. (2.14)

Then, by applying the linearity of the integral, I obtain the equation of the

energy consumption of each component:

Ecpu(h) =
∫ tend

tstart
Pcpu(h, t) dt, (2.15)

2.4. ENERGY MODEL 31

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 20 40 60 80 100

P
O

W
E
R

 [
W

]

CPU USAGE [%]

AMD Opteron
Intel Xeon

Figure 2.3: Instantaneous power consumption of a host in relation to CPU
utilization.

Enet(h) =
∫ tend

tstart
Pnet(h, t) dt, (2.16)

Eio(h) =
∫ tend

tstart
Pio(h, t) dt. (2.17)

I analyse each one of them in the following sections.

2.4.1 CPU power model

As CPU is the most impacting component on the energy consumption of

a PM [93], I focus mostly on this model. Most works on energy mod-

elling [95, 96] assume a linear relationship between the CPU use and its

power consumption. However, power consumption is more aligned with a

piecewise linear trend according to the observations in Figure 2.3 using the

two sets of machines presented in Table 3.5c. The initial transition from

idle to non-idle state, when several hardware components are simultaneously

starting to consume power (e.g. caches), produce in a higher growth in power

32 CHAPTER 2. MODEL

consumption at low load levels. Once all components are powered up, the

power grows at a different trend:

Plow-cpu(h, t) =α(h) ·Pr(h) · load cpu(h, t), (2.18)

Phigh-cpu(h, t) =β(h) ·Pr(h) + (1− β(h)) ·Pr(h) · loadcpu(h, t); (2.19)

Pcpu(h, t) =

 Plow-cpu(h, t), loadcpu(h, t) ≤ L(h);

Phigh-cpu(h, t), otherwise,
(2.20)

where L(h) is the load at which the trend changes on host h, loadcpu(h, t) is

the CPU load on host h at time instance t, and Pr(h) = Pmax(h)− Pidle(h),

where Pmax(h) and Pidle(h) are the maximum and idle power consumptions

of host h, and α(h) and β(h) are the coefficients for low (i.e. ≤ L(h)) and

high (i.e. > L(h)) CPU load levels.

2.4.2 Network transfer power model

For both network and disk energy consumption, I assume a linear relation-

ship between load and power consumption. However, I need to do further

considerations for network modelling. First of all, in a typical data centre

storage is shared on the network between all the PMs. Therefore, writing

on disk necessarily results in a network transfer. For this reason, I provide a

more detailed model for it, considering parameters such as (1) the packet size

that I use over the network, (2) the amount of simultaneous connections and

(3) the communication patterns. Plus, since in data centres different types

of network interfaces are available, I build a model able to capture how these

interfaces work. I distinguish two types of connections: the classical CSMA-

CD connection used in technologies like Ethernet and RDMA connections,

used in technologies like Infiniband. I made this choice because these two

interconnection technologies are both widely used in typical data centres. I

refer to the first type as datagram connections and to the latter as connected

connections. In Section 4.2, I describe in detail both technologies and how

differently they impact energy consumption. In the next section I describe

the factors that are impacting the most the network energy consumption.

2.4. ENERGY MODEL 33

Energy-impacting factors

I describe the main factors affecting the energy consumption of network trans-

fers according to my studies.

• Time this parameter must be considered since the longer a network

transfer, the more energy it consumes.

• Transport protocol affects energy consumption because it defines the

way in which transfers are performed. It defines how application layer’s

effective data are encapsulated. Such encapsulation inherently affects

the NIC’s operational mode and the amount of transferred data. While

there exist many transport protocols (e.g. TCP, UDP, RSVP, SCTP),

I only focus my analysis on TCP, the most pervasive one.

• Per-packet payload size is the real data transmitted with a single packet,

juxtaposed to a header that makes the communication possible. The

payload size depends on many factors such as protocol configuration,

physical layer MTU, maximum segment size (MSS, representing the

largest amount of data that can be sent in a single packet) on TCP,

and other application characteristics (e.g. some applications require

frequent exchange of small packets). Payload size has an impact on

time, since a smaller payload size implies a higher number of packets

and thus, more headers to process.

• Number of connections is the number of simultaneous connections to

the NIC, typically shared among multiple applications that simultane-

ously send and receive data. With an increasing number of connections,

one could experience a higher energy consumption due to the overhead

introduced by their arbitration.

• Traffic patterns are different types of traffic generated by network-

centric applications as showed in [97], characterised by the inter-arrival

time of packets.

34 CHAPTER 2. MODEL

Power model

A network transfer occurs in two different directions: sending and receiving.

Power draw of the network transfer is different if the transfer is a send or a

receive. Therefore, I use different coefficients for send and receive. I model

the power draw of network transfer as:

P x
net(h, t) = δx · loadnet(h, t) +Kx(cx(t)), (2.21)

where x ∈ {s, r} and s, r refer respectively to send and receive. loadnet(h)

models the network load on host h and δx the linear relationship between

network load and power draw. Concerning the Kx(cx(t)), it models the

hardware related constant of the NIC, plus the overhead Onet(cx(t)) given by

the number of simultaneous connections at time t, cx(t), formally:

Kx(cx(t)) = Kx +Onet(cx(t)), (2.22)

Regarding the overhead of multiple connections, since Gigabit and In-

finiband datagram use the NICs in a different way compared to Infiniband

connected, their arbitration of multiple connections is different too. For this

reason, I employ Equation 2.23 for both Gigabit and Infiniband datagram

and Equation 2.24 for Infiniband connected:

Odatagram(cx(t)) = log(ε · cx(t) + ζ), (2.23)

Oconnected(cx(t)) = ε · cx(t)ζ , (2.24)

where ε and ζ model the cost in terms of power draw of arbitrating multiple

simultaneous connections. When modelling network transfer, further param-

eters that affects the time tend at which the network transfer ends need to be

considered. This time is determined by (1) the network bandwidth on host

h, BWmax
net (h) and (2) the delay caused by transfer patterns, modelled by the

parameters bx and tx, as in:

tend =
DATAx

BWmaxnet (h)
+ delay(DATAx, bx, tx), (2.25)

2.4. ENERGY MODEL 35

and delay(DATAx, bx, tx) is defined as follows:

delay(DATAx, bx, tx) = θ ·
DATAx

BWnet(h)

bx
· ι · tx, (2.26)

where bx and tx the size of burst and throttle intervals in ms. DATAx is the

real number of bytes transferred, that is the sum of actual data transferred

by the application, plus the additional data needed for routing and transfer

control, that is calculated according to

DATAx = PAYLOADx +
PAYLOADx

px
· HEADER, (2.27)

where PAYLOADx is the quantity of data to be sent/received, px is the payload

per packet and HEADER the size of the header of each packet, whose size de-

pends on the network protocol. Coefficients δx, θx, ιx, εx and ζx are calculated

through linear regression. Their value is summarised in Table 4.4 together

with the model error.

2.4.3 Disk power model

For power draw of disk operations, I slightly modify the model proposed

by [94] by including only write operations, since in this scenario I expect to

experience more writes than read, as explained in 2.5:

Pio(h, t) = δ(h) ·Pr(h) · loadio(h, t), (2.28)

where δ(h) models the linear relationship between disk load and power draw

coefficients.

2.4.4 VM migration model

In this section, I introduce the model for the energy consumption of each pre-

viously described migration phase. The energy consumption of the complete

VM migration process is the sum of the energy consumption of each phase.

I formally define VM migration as transferring the state of a migrating VM

36 CHAPTER 2. MODEL

v from a source host S to a target host T . As I showed in Section 2.3.1,

VM migration goes through different energy consumption phases. To de-

limit these phases, for each migration, I define ms as the moment when the

migration starts; ts and te the time instances when the transfer phase of the

migration starts and ends; and me as the instant when the migration ends.

Thus the following time intervals define the phases: (1) between ms and ts

is the initiation phase, (2) between ts and te is the transfer phase and (3)

between te and me is the activation phase, meaning, the time instance when

V∗(h, t) changes. v represents the migrating VM, S the source host and T
the target host of the VM migration. Finally, I define M(h, t) as the set of

all the m whose ms ≥ t, me ≤ t and h ∈ {S, T }.

Resource utilisation model

According to the analysis in Section 2.3, the most impacting actors for VM

migration are the source host (S), the target host (T) and the migrating VM

(v). In this section I present a model for each actor’s resource utilisation,

to which their energy consumption is directly correlated. I define resource

utilisation for VM migration R as a vector:

R = [R(S, t),R(T , t),R(v, t)], (2.29)

reflecting the actors in Section 2.3.1. I define for both S and T hosts as well

as for the migrating VM v a vector R where each element of the vector rep-

resents the usage of the given resource at the instant t. Both hosts and the

VM have different types of resource use (e.g. CPU, memory, network, disk),

as in definitions 3 and 5. However, according to the analysis in Table 3.2,

the most impacting parameters on migration are: (1) CPU utilisation of the

source loadcpu(S, t), target loadcpu(T , t), and migrating VM loadcpu(v, t) at

time instance t, (2) memory dirtying ratio DR(v, t) of the VM v expressed in

the percentage of pages marked as dirty at time instance t, (3) the amount of

memory RAMmax(v) allocated to the migrating VM v, and (4) beside these,

it is also necessary to consider that migration involves transferring the state

of the migrating VM over the network from source to target. Therefore, I

2.4. ENERGY MODEL 37

consider the available network bandwidth BWnet(h, t) between hosts for trans-

ferring the state of the migrating VM. If the VM is idle or suspended, then

loadcpu(v, t) = 0 and DR(v, t) = 0. Otherwise, I define the memory dirtying

ratio DR(v, t) as a value between 0 and 1, modelling the percentage of memory

pages that are marked as dirty at the instant t.

Concerning the memory-related parameters, there are three parameters

that are influencing energy consumption: memory size, memory bandwidth

and memory dirtying ratio. Memory size is the amount of RAM allocated

to the VM. It affects the migration time because an higher amount of mem-

ory allocated to the VM results in a longer migration time, regardless of

the workload the VM is running. I consider this parameter in this energy

model, because it has an impact on the migration time. Concerning memory

bandwidth, it is the amount of bytes that can be read or written during a

given interval of time. I do not consider it in this model because according

to my analysis (see Section 2.3.1) rather then how many bytes are written

in RAM, what matters is the dirtying ratio, that is the amount of memory

pages that are modified while a migration is occurring. For this reason, I

choose to focus only on two memory-related parameters: memory size and

memory dirtying ratio. As migration is used in data centres, VMs can run on

different hosts in different intervals of time. Therefore, I define for each VM

a vector of triples (h, tarrival, tleave), each triple meaning that the VM v has

been running on the host h in the time interval between tarrival and tleave. In

this context, V∗(h, t) (see Definition 3) can be seen as all the VMs in V∗(h)

whose tarrival ≤ t and whose tleave > t. For this reason, resource utilisation

of VM migration is defined as follows:

Rvm(v, t) = {loadcpu(v, t), RAMmax(v), DR(v, t)},
R(h, t) = {loadvirtcpu (h, t),

∑
v∈V∗(h,t)Rvm(v, t), BWnet(h, t)},

(2.30)

where loadcpu(v, t) is the CPU usage of the VM v at the instant t, that

is dependent from the workload the VM is running. RAMmax(v) represents

the memory size allocated to VM v, defined as number of memory pages.

DR(v, t) is the dirtying ratio of the workload running on the VM at the time

38 CHAPTER 2. MODEL

t. Concerning R, BWnet(h, t) is the bandwidth available on the host h at the

instant t. The parameters loadcpu(S, t) and loadcpu(T , t) mainly depend on

three terms:

1. CPU utilisation loadvmmcpu (h, t) for arbitrating the hardware resources

shared among the VMs,

2. CPU utilisation loadcpu(v, t) of each VM v executed on the host h at

the instant t,

3. CPU load loadmigrcpu (h, t) added by migration on both source and target.

Therefore, I detail the previous definition as follows:

loadcpu(h, t) = loadvmmcpu (V∗(h, t)) +
∑

v∈V∗(h,t)

loadcpu(v, t) + loadmigrcpu (h, t),

(2.31)

where V∗(h, t) is the complete set of VMs running on the host h ∈ {S, T }
at time instance t other than the migrating VM v. Equation 2.31 formalizes

the total CPU utilisation for host h at instant t:

loadvirtcpu (h, t) = loadvmmcpu (V∗(h, t)) +
∑

m∈M(h,t)

loadmigrcpu (m, t). (2.32)

Finally, I define the CPU usage of the whole PM as follows:

loadcpu(h, t) = loadvirtcpu (h, t) +
∑

v∈V(h,t)
loadcpu(v, t). (2.33)

In Equation 2.31 I do not consider how arbitration of CPU resources between

the Virtual Machine Monitor (VMM) and migrating VM is performed, be-

cause I observed that it does not affect power consumption.

Energy model

First, I define the consumption of a VM v running in a PM h, which I denote

as Evm(v, h). Power consumption of a VM v on a host h depends on two

main parameters: (1) resource usage of v and (2) the time interval (tarrival,

2.4. ENERGY MODEL 39

tleave) in which the VM is running on host h. Moreover, the power drawn

of v also depends on the host that is running v. Therefore, the host that

is executing the VM needs to be included as parameter in order to use its

instantaneous in the definition. For simplicity, I assume that if a VM is not

running or has been suspended, its dynamical power on the host h is equal to

0. Therefore, I define the consumption of the VM as Evm(v, (tarrival, tleave)),

as shown in the following equation:

Evm(v, tarrival, tleave) =
∫ tleave

tarrival

P (Rvm(v, t)) dt. (2.34)

Next, as I consider also energy consumption given by virtualization, I ex-

tend the equation of the active energy consumption of the host h (see Equa-

tion 2.14) as follows:

Eactive(h) =
∫ tend

tstart
Pactive(h) + Pvirt(h, t) dt. (2.35)

Concerning Pvirt, this power draw is given by (1) the arbitration of the re-

source requirements of the VMs running on host h and (2) the power con-

sumption of the VMs management tasks (e.g, migration, shutdown, startup).

For this model, I focus only on the VM migration energy consumption. The

first is dependent on the resource usage of the host and on the resource de-

mand of each VM executed on the host h, the latter on migration-related

parameters. To describe the power consumption of virtualization, I finally

define Pvirt(h, t):

Pvirt(h, t) = Pvmm(R(h, t)) +
∑

m∈M(h,t)

Pmigr(m,h, t), (2.36)

where Pvmm is the power consumed by the VMM to handle the contention of

resources by the VMs in the host, while Pmigr the power consumed by migra-

tion, that is equal to 0 whenM(h, t) = ∅. In the following I do not consider

Pvmm, as I do not expect it to vary significantly over the time. Therefore, I

focus on the power consumption of VM migration, Pmigr. As I explain in

Section 2.3.1, the VM migration power draw varies according to the energy

40 CHAPTER 2. MODEL

phase that the VM migration is performing. Therefore, I define Pmigr as the

sum of the power draw in each phase:

Pmigr(h, v) = P (i)(h, v, t) + P (t)(h, v, t) + P (a)(h, v, t). (2.37)

Then, I consequently define energy consumption of VM migration as follows:

for each PM h ∈ {S, T }, the energy consumption of the migration is the

integral of the instantaneous power drawn caused by the migration process

throughout its duration [ms,me]:

Emigr(h, v) =
∫ me

ms

Pmigr(h, v) dt =∫ me

ms

P (i)(h, v, t) + P (t)(h, v, t) + P (a)(h, v, t) dt, (2.38)

where the power drawn is represented as the sum of the power consumed

over the three phases identified in Section 2.3.1: initiation P(i), transfer

P(t), and activation P(a). The following subsections discuss the model for

each of these power drawn functions. Integrating these values over the mi-

gration time, I obtain the energy consumption over each phase, Ei(h, v),

Et(h, v) and Ea(h, v), respectively. After defining power consumption for

each VM migration phase, I move on defining energy consumption of the

whole VM migration process. First, I define a migration m as a quadruple

((mstart, tstart, tend,mend), v,S, T), where mstart is the instant in which the

migration starts, tstart and tend are the instants in which, respectively, the

transfer phase of the migration starts and ends, and mend is the instant in

which the migration ends. The time interval between mstart and tstart is

the one during which initiation phase takes place and the one between tend

and mend is when activation phase takes place. v represents the migrating

VM and S, T represent respectively source and target hosts. I define energy

consumption of each phase, where Ei(h, v) is the energy consumed in the

initiation phase:

Ei(h, v) =
∫ ts

ms

P (i)(h, v, t) dt, (2.39)

2.4. ENERGY MODEL 41

Et(h, v) is the energy consumed over by transfer phase:

Et(h, v) =
∫ te

ts
P (t)(h, v, t) dt, (2.40)

and Ea(h, v) is the energy consumed by the activation phase:

Ea(h, v) =
∫ me

te
P (a)(h, v, t) dt, (2.41)

where the power functions are subject to the following constraints:

P (i)(R(h, t),Rvm(v, t),m) = 0 if t > ts or t < ms,

P (t)(R(h, t),Rvm(v, t),m) = 0 if t < ts or t > te,

P (a)(R(h, t),Rvm(v, t),m) = 0 if t < te or t > me.

(2.42)

In the following, I differentiate the power functions according to the host I

model. According to the analysis I performed in Section 2.3.1, the energy

consumption of each phase is influenced by different actors. I give more

detail about this in the following sections, in which I describe the power

draw functions during each VM migration phase. To improve readability, I

simplify the notation of each function as follows:

P (i)(R(h, t),Rvm(v, t),m) = P (i)(h, v, t),

P (t)(R(h, t),Rvm(v, t),m) = P (t)(h, v, t),

P (a)(R(h, t),Rvm(v, t),m) = P (a)(h, v, t).

(2.43)

In the next subsections, I provide more details about each phase’s power

consumption.

Initiation phase

In this phase, I expect the power consumption on both hosts to depend

on: (1) the increase in CPU usage for initiating VM migration and (2) the

additional CPU usage for suspending the VM on the source host. On the

source host, I also consider the resource usage of the VM that is be running

over this phase: Since I observed that power consumption is proportional to

the CPU load of the host and of the VM, I employ Equation 2.44 to estimate

42 CHAPTER 2. MODEL

power consumption on both hosts:

P (i)(h, v, t) = αm(i)(h) ·R(h, t) + βm(i)(h) ·Rvm(v, t) + Cm(i)(h)

= αm(i)(h) · loadcpu(h, t) + βm(i)(h) · loadcpu(v, t) + Cm(i)(h), (2.44)

where αm(i)(h) and βm(i)(h) model the relationship between the CPU usage of

the two PMs and of the migrating VM to the power consumption, and Cm(i)(h)

include the power consumption the for establishing a connection between the

two PMs. I approximate the power consumption with a linear function, as

done in [98]. On the source host, it also includes the power consumption for

suspending the VM. As the target is not yet involved in the execution of the

VM, in the equation for T I set loadcpu(v, t) = 0.

Transfer phase

Since transferring the state of the VM from the source to the target host

is a network-intensive process, its power consumption is mainly related to

the network bandwidth. In this phase, I also consider the CPU usage on

both hosts proportional to the power consumption, while I also expect a

linear relationship between dirtying ratio and power consumption due to the

increased contention on memory.

P (t)(h, v, t) = [αm(t)(x), βm(t)(x)]′ ·R(h, t)+[γm(t)(x), δm(t)(x)]′ ·Rvm(v, t)+Cm(t)(x)

= αm(t)(h) · loadcpu(h, t) + βm(t)(h) · BWnet(h, t) + γm(t)(h)

· DR(v, t) + δm(t)(h) · loadcpu(v, t) + Cm(t)(h), (2.45)

where αm(t)(h) models the linear relationship between power and CPU usage,

βm(t)(h) the relationship between bandwidth and power, γm(t)(h) the linear

relationship between the dirtying ratio and power consumption, δm(t)(h) the

linear relationship between the migrating VM’s CPU usage and its power

consumption and Cmt (h) the power consumption for moving the state of the

migrating VM to the target host. I expect the latter to be higher on the

target host than on the source because it also needs to load the VM state

2.5. RUNTIME MODELLING 43

in memory. The main difference between live and non-live migration is that

during a live migration, the migrating VM is still running on the source

host and, therefore, I consider the power consumption on the host due to its

workload (i.e., DR(v, t) 6= 0 and loadcpu(v, t) 6= 0). As the VM is not yet on

the target, both the dirtying ratio and the migrating VM’s CPU utilisation

becomes 0 while evaluating power consumption on the target host.

In this case I also consider the CPU usage of the migrating VM, since it

is still running during the transfer phase.

Activation phase

After the transfer phase is completed, there are two remaining actions to

be performed: resuming the VM on the target host and deallocating the

resources occupied on the source host. Afterwards, due to the release of

the resources previously owned by the migrating VM, on the source host,

I consider the CPU load and a constant power consumption Cm(a)(S) only.

Concerning the target host, I consider the power consumed by the migrating

VM that starts its execution, as well as the constant power consumed by the

hypervisor to start the VM Cm(a)(T):

P (a)(h, v, t) = αm(a)(h) ·R(h, t) + βm(a)(h) ·Rvm(v, t) + Cm(a)(h)

= αm(a)(h) · loadcpu(h, t) + βm(a)(h) · loadcpu(v, t) + Cm(a)(h), (2.46)

where αm(a)(h) models the linear relationship between CPU usage and power

consumption, and βm(a)(h) models the relationship between the CPU usage of

the starting VM.

2.5 Runtime modelling

In this work, I aim to simulate not only power consumption but also the VM

migration time. VM migration is the process of transferring the VM state

from source to target. I distinguish between two types of VM migration: non-

live and live migration. In the non-live migration, the VM state is transferred

44 CHAPTER 2. MODEL

after suspending the VM on the source and then resuming it on the target

host. In the live migration, the state of the VM is transferred while the VM

is still running. For both migration types, I identified in Section 2.3.1 three

VM migration phases:

• Initiation phase, during which source host prepares transferring the VM

state to the target host and the target reserves the resources necessary

to host the VM;

• Transfer phase, during which the VM state is transferred from the

source to the target host in a way depending on whether a non-live or

live migration is performed;

• Activation phase, during which the source host frees the resources oc-

cupied by the VM and the target starts it.

I therefore define the VM migration time Tmigr(v, h,S, T) on host h for

migrating the VM v from the source S to the target host T as the sum of

the times required in each phase:

Tmigr(v, h,S, T) = Tinit(v, h) + Ttransf(v, h,S, T) + Tactiv(v, h). (2.47)

In the initiation phase, the source host prepares a checkpoint of the VM

to be sent to the target. In the activation phase, the source host frees the

resource allocated to the VM and the target starts it. Therefore, the times

required by both initiation Tinit(v, h) and activation Tactiv(v, h) phases are

only dependent on the VM size RAMmax(v) and the storage bandwidth on the

host h:

Tinit(v, h) = Tactiv(v, h) =
RAMmax(v)

BWio(h, t)
. (2.48)

The transfer phase, on the other hand, has a different execution time for

a live or a non-live migration. The non-live migration time T nonlive
transf depends

only on the VM size and the bandwidth on the host h at instant t, BWnet(h, t):

T nonlive
transf =

RAMmax(v)

BWnet(h, t)
. (2.49)

2.6. SUMMARY 45

Live migration is instead performed iteratively while the VM v is still run-

ning. Therefore, the VM state needs to be continuously updated over a

predefined number of iterations, set in the hypervisor’s configuration. Af-

ter the initial state transfer, during each iteration only the memory pages

that have been modified during the previous transfer of the VM state are

transferred, leading to the following live VM transfer time:

T live
transf =

RAMmax(v)

BWnet(h, t)
+
I∑
i=1

DP(v, i)

BWnet(h, t)
, (2.50)

where I is the number of iterations and:

DP(v, i) =
RAM(v)

PS(v)
· DR(v, i), (2.51)

where DR(v, i) is the dirtying rate of the VM v or the percentage of memory

pages marked as dirty during an iteration i, and PS(v) is the size of each

memory page of VM v.

Section 6.3 gives implementation details of this model.

2.6 Summary

In this chapter, I formally defined all the actors that are involved in this work.

Then, since the main focus of this work is the modelling of VM migration,

I focused on defining a VM and its role inside a data centre. Afterwards, I

defined the VM migration as the activity that allows the data centre man-

agement to perform VM consolidation. Then, I gave deep insights on VM

migration, describing the difference between non-live and live migration and

its power characteristics. Then, I proposed a model for data centre energy

consumption, considering all the actors involved in VM migration. After-

wards, I defined VM migration as a network intensive process, by developing

a simple network transfer energy consumption model that I further use to

predict energy consumption of VM migration. Then, I designed an extended

version of the model, taking into account not only network transfer consump-

tion but also VM workload and all the actors that are involved in the VM

46 CHAPTER 2. MODEL

migration process. In the next chapters I validate and implement this model,

showing its improved accuracy compared to the state-of-the-art.

Chapter 3

Experimental methodology

3.1 Introduction

In this chapter I introduce the experimental methodology that has been used

to validate my work. First, I describe the different possibilities to measure

energy consumption of the PMs, explaining the motivations behind the choice

of the selected measurement framework. Afterwards, I describe more in de-

tail the measurement framework, and the additional hardware I employed to

measure energy consumption of the PMs that were the targets of my exper-

iments. Afterwards, I describe the benchmarks I use to generate the type

of load that is needed for my experiments and to get measurements that

are needed to generate the training and test set for the model’s validation,

respectively for network transfers and for VM migration.

3.2 Motivation

In most of the existing work about energy prediction in data centres, like [33,

32, 96], authors consider only energy consumption generated by CPU. How-

ever, to provide a more accurate estimation, my model considers also network

and storage energy consumption, as modelled respectively in Equations 2.16

and 2.17. Therefore, for validation purposes, I needed to get power measure-

ments not only related to CPU load but also to each one of these components.

47

48 CHAPTER 3. EXPERIMENTAL METHODOLOGY

To get these measurements, I needed fine grain measurements for each PM

component. Concerning CPU, technologies like RAPL [99] are available on

some architectures for measuring power draw, but such components are still

not available for other components. For these reasons, I resorted to use exter-

nal power measurement devices. However, such power measurement devices

allow to measure only the power consumption of the whole machine, making

difficult to isolate power draw that is generated by a specific component.

Therefore, I needed a way to isolate power draw for each component. To

this end, I decided to use an approach that allows me to measure the ma-

chine power draw through the external power measurement devices, but only

during the execution of specific portion of application source code. Such an

approach is called code instrumentation. For example, if the measurements

are taken during the execution of a CPU intensive portion of code, I can as-

sume that the power draw I measure in this phase is stemming mostly from

the CPU load. Conversely, if I measure during the execution of a network

transfer, I can assume that the measured power draw is related to the network

transfer. After defining the measurement framework, I needed also applica-

tions capable of loading specific PM’s components, so that I can extract data

about the power draw of each one of the selected components. For example,

if I want to measure energy consumption of the network, I need applications

that are loading mostly the network, such as intensive network transfers over

TCP sockets and so on. From this applications, I need to isolate the portions

of code that are specific to the network transfers and instrument them using

the selected framework. After instrumenting them, I measured power draw

of these portions of code. I give more details about it in the next sections.

3.3 Code instrumentation framework

In this section I describe the way I get the power measurements I need for my

model validation. An example of the way such framework works is given in

Figure 3.2, where the highlighted code lines describe the way a measurement

is performed and how the data is collected. Of course there will be some re-

source arbitration and scheduling related power draw involved, but for sure

3.3. CODE INSTRUMENTATION FRAMEWORK 49

less than measuring the power consumption over the whole application, giv-

ing a precise way to estimate energy consumption of different components.

This framework exploits the API offered by the power measurement device

that I used during this work, the Voltech PM1000+1. The framework relies

on a third part, called the PM server, that is responsible for managing the

power measurement devices and gathering the measurements from them. The

operation mode is summarised by Figure 3.1. The power measurement de-

vices are attached to the PMs. The application is compiled by including the

power measurement library and by adding the functions that will determine

the start and the end of the measurements. Once the instrumented appli-

cation reaches a code region whose power draw I measure, the measurement

collecting phase goes through the following steps:

1. pmStartSession(): a message from the PM to the PM server is sent,

instructing it to start the power measurements;

2. connection with devices : once the PM server receives the request of

starting a measurement session, it will instruct the power measurement

devices to start measuring the power draw on the PM of interest;

3. collect measurements : during this phase, the PM server reads the the

power draw of the PM through power measurement devices, storing

them in its hard drive;

4. pmStopSession(): a connection from the PM to the PM server is per-

formed, to tell it to stop collecting measurements. Once the PM server

receives this message, interrupts the connection with the devices and

saves the data collected until now;

5. measurements retrieval : finally, the power measurements device has

read until now are saved on the PM, ready to be further analysed.

It is important to note that once the measurement session starts, no

further interaction happens with the PM server until the instrumented binary

tells it to stop its measurements. I do this in order to reduce overhead on

1http://www.farnell.com/datasheets/320316.pdf

http://www.farnell.com/datasheets/320316.pdf

50 CHAPTER 3. EXPERIMENTAL METHODOLOGY

Figure 3.1: Code instrumentation framework.

self.eneI.startSession(taskId)

for i in range(len(A)):

for j in range(len(B[0])):

for k in range(len(B)):

C[i][j] += A[i][k]*B[k][j]

self.eneI.stopSession ()

energyReadings = self.eneI.getEnergy ()

Figure 3.2: Example of usage of the code instrumentation framework.

the network and to add to the PM some computation/communication cost

that could affect the accuracy of my measurements. In the next section, I

describe the applications that I use to collect the measurements I needed for

validating my model.

3.4 Network benchmarking

In this section I describe the benchmarking methodology for evaluating the

energy consumption of the NIC software stacks.

3.4. NETWORK BENCHMARKING 51

IDLE IDLE IDLE

time

SND/RCV

burst throttle throttle throttle

SND/RCV

burst

SND/RCV

burst

Figure 3.3: PATTERN benchmark (burst/throttle intervals).

3.4.1 Experimental design

Network benchmarks

I investigate each factor through six benchmarks. Each benchmark is stud-

ied to test the impact of different network energy impacting factors, that I

outlined in Section 2.4.2. All the benchmarks run on TCP transport protocol.

BASE benchmark investigates the impact of the network transfer on the

energy consumption by transferring a fixed amount of data using sockets

without any specific tuning.

PSIZE benchmarks investigate whether the NIC energy consumption is

related to the payload size under two premises: (1) PSIZE-DATA determines

the impact of the payload size on energy efficiency independent of the data

size by repeatedly transferring a fixed amount of data while varying the

maximum payload size, and (2) PSIZE-TIME performs a maximum payload

size evaluation with a fixed transfer time by continuously transferring data

until the timeout I set is reached.

n-UPLEX benchmark evaluates the energy consumption of NICs in full

duplex (FD) mode, while handling multiple concurrent connections. I trans-

fer a fixed amount of data using a varying number of FD connections on each

machine.

PATTERN benchmarks evaluate the effects of traffic patterns on energy

consumption. I transfer data multiple times, and configure the data trans-

missions to be a succession of burst and throttle intervals, representing fixed

52 CHAPTER 3. EXPERIMENTAL METHODOLOGY

Tool
Transfer Transfer MSS Disable FD/HD Concurrent Variable
data size timeout settingbuffering1connectionsconnections pattern

ttcp2 3 7 7 3 7 7 7

netperf3 3 3 7 3 7 7 7

iperf 4 3 3 3 3 3 3 7

1 e.g. an option for setting the TCP NODELAY
2 version 1.12
3 version 2.4
4 version 2.05

Table 3.1: Comparison of networking benchmarking/diagnosis tools.

time intervals in which the NICs are continuously communicating and idle,

as depicted in Figure 3.3. For PATTERN-B I keep the throttle size constant

and vary the burst size, while PATTERN-T I vary the throttle size keeping

a constant burst size.

For the PSIZE benchmarks, I need to successively set the transferred

data size and a transmission timeout, and to strictly control the packet size.

This can be achieved by altering the MSS and by disabling any buffering

algorithms. For the n-UPLEX benchmark, I need to configure the type of

(FD/HD) connections and the number of simultaneous connections. Finally,

the PATTERN benchmark requires the possibility to shape the communi-

cation patterns through variable burst and throttle intervals. In the next

section, I describe how I implemented these benchmarks.

Network benchmarks implementation)

To configure the metrics of my study based on transfer data size and time-

out, payload size, FD/half-duplex (HD) connections, connection concur-

rency, and transmission patterns, I analyzed three of the most popular open-

source network diagnosis and benchmarking tools: ttcp2, netperf3 and

iperf4. Table 3.1 presents a comparison of the flexibility of these tools

focused on the provided configuration options for the metrics relevant to

2http://www.pcausa.com/Utilities/pcattcp.htm
3http://www.netperf.org/netperf/
4http://iperf.sourceforge.net/

http://www.pcausa.com/Utilities/pcattcp.htm
http://www.netperf.org/netperf/
http://iperf.sourceforge.net/

3.4. NETWORK BENCHMARKING 53

this study. Since none of the analysed tools covers all configuration param-

eters needed, I designed the Nimble NEtwork Traffic Shaper (NNETS), a

versatile network traffic shaping tool implemented in Python 2.7 using the

standard socket API, publicly available under GNU GPL v3 license at the

URL https://github.com/vincenzo-uibk/nnets). In addition to the cus-

tom design required for accommodating all studied configurations, the tool

allows a proper instrumentation of network and energy metrics. I imple-

mented it with a clear separation between data processing and networking

operations in order to instrument only the relevant regions of code, exclud-

ing data staging and pre-/post- processing operations and ensuring that the

measured energy consumption is strictly related to the network transfer.

To evaluate software stacks’ energy efficiency I employ the following five

metrics:

• Machine energy consumption defined in Equation 2.35, in Kilojoules

kJ, defining the energy consumption of the whole PM subsystems for

running each experiment;

• Network energy consumption defined in Equation 2.16, in Kilojoules

kJ,computed as the difference between the machine’s energy consump-

tion during benchmarks’ execution and its idle consumption. This met-

ric includes the energy consumed by all hardware components involved

in a network transfer, which I purposely include to have a more realistic

metric related to the software application and not to the hardware;

To have further indications about energy and power behavior of each NIC, I

also compute the following metrics:

• Average power in Watts (W), defined as the ratio between network

energy consumption and its execution time;

• Energy per byte in Nanojoules nJ,defined as the ratio between the net-

work energy consumption and the number of bytes transferred, which

indicates how energy consumption varies in relation to the size of data

transfer;

https://github.com/vincenzo-uibk/nnets

54 CHAPTER 3. EXPERIMENTAL METHODOLOGY

• Energy per packet in Millijoules mJ, defined as the ratio between the

network energy consumption and the amount of packets transferred.

3.5 VM migration benchmarking

3.5.1 Experimental design

In this section, I introduce the methodology to evaluate the VM migration

model’s accuracy: first, I describe the rationale behind the experimental

design, then I introduce the hardware and software configuration for my

energy measurements.

Workloads

The three selected actors can influence the energy consumption of VM mi-

gration in different ways, especially depending on the workloads they are

running. I analyse this aspect in the following paragraphs. Each actor has a

different influence on VM migration according to the type of workload that

is currently running.

Although there may be different kind of workloads running in a data cen-

tre (e.g. CPU-intensive, memory-intensive, network-intensive, or mixed), in

the following, I focus on the CPU and memory-intensive ones because they

impact the VM migration process the most. CPU-intensive workloads have

the highest impact on migration which is highly prone to performance degra-

dations if one actor needs to perform migration-related computations while

running a CPU-intensive workload. Concerning memory-intensive workloads

that continuously update RAM locations, several transfers are needed to

achieve a consistent state between the source and the target if such updates

happen before the state is transferred over the network. Table 3.2 sum-

marises the workloads’ impact on VM migration. When the migrating VM

is running a CPU-intensive workload, a performance drop may be experi-

enced if the source and/or target hosts are fully loaded because the host’s

CPU must be shared between the workload of the hosts and the newly initi-

ated migration process. If the migrating VM is running a memory-intensive

3.5. VM MIGRATION BENCHMARKING 55

workload that continuously updates RAM locations, it will highly impact

the performance of the live migration approach since several state updates

are needed to achieve a consistent VM state between the source and the tar-

get hosts. I do not consider the case when a non-live migration approach is

used, because in this approach the VM will be suspended before migrating

it to the target. For these reasons, I only consider in this work (1) CPU

intensive workloads running on source, target and migrating VM, and (2)

memory-intensive workloads running on the migrating VM. I consider as

memory-intensive workloads: (1) workloads using at least 90% of the mem-

ory allocated to the VM and (2) workloads with a high memory dirty ratio

(i.e. a high percentage of memory pages marked as dirty over a given amount

of time).

When migrating VM is running a CPU-intensive workload, performance

drop in VM migration may be experienced if either source or target are

fully loaded. This is because both migrating VM and the workload of the

source/target are using all the machine’s CPUs. Thus, once a migration is

issued it will share the CPU with the workload running on the machine and

on the migrating VM. In case the source host is loaded, such an effect on

migration performance will be visible when the state is transferred or even

when the machine is started up, if the target is loaded. This performance

drop will be visible also in the case of non-live migration. I do not consider the

case where either source or target are not fully loaded, because in this case no

contention is expected. If the migrating VM is running a Memory-intensive

workload instead,this will impact performance of migration especially if a

live migration approach is used. Such performance drops will be experienced

no matter what kind of workload source or target are running and regardless

of the load they are experiencing in the meanwhile. I do not consider the

case when a non-live migration approach is used, because in this approach

the VM will be suspended before migrating it to the target. For this reason,

the state will be transferred to the target just once, with no impact on VM

migration performance.

• CPU-intensive: If VM is running a CPU-intensive workload, perfor-

56 CHAPTER 3. EXPERIMENTAL METHODOLOGY

Workload Migration type Migrating VM Source host Target host
CPU LIVE Source/target Slowdown Slowdown for VM

intensive NON-LIVE load-dependant in transfer start or transfer
MEMORY LIVE Multiple transfers of Slight Slight

VM state performance performance
intensive NON-LIVE No influence degradation degradation

Table 3.2: Workload impact on VM migration according to the hosting actor.

mance drop in VM migration may be experienced if either source or

target are fully loaded. This is because both migrating VM and the

workload of the source/target are using all the machine’s CPUs. Thus,

once a migration is issued it will fight for the CPU with the workload

running on the machine and on the migrating VM. Such an effect on

migration performance will be visible when the state is transferred, in

the case the source is loaded, or even when the machine is started up,

if the target is loaded. This performance drop will be visible also in

the case of non-live migration. I do not consider the case where either

source or target are not fully loaded, because in this case no contention

is expected.

• Memory-intensive: When a VM is running a memory-intensive work-

load, this will impact performance of migration, especially if a live mi-

gration approach is used. Such performance drops will be experienced

no matter what kind of workload source or target are running and re-

gardless of the load they are experiencing in the meanwhile. Such a

performance drop will be proportional to the amount of modifications

performed in the memory while the state is transferred over the net-

work. I do not consider the case when a non-live migration approach

is used, because in this approach the VM will be suspended before mi-

grating it to the target. For this reason, the state will be transferred

to the target just once, with no impact on VM migration performance.

Therefore, I need to model VM migration consumption taking into ac-

count each one of the selected workload and actors.

3.5. VM MIGRATION BENCHMARKING 57

My experimental settings are summarised in Table 3.5a, and the VM and

hardware configurations in Tables 3.5b and 3.3. I used the Xen hypervisor

version 4.2.5, including both xm and xl toolstacks configured to perform

the live and non-live migrations between two PMs as specified in Table 3.3.

The two machines were connected through a networking switch. For my

experiments, I use two hosts capable of running Xen virtualization software

and configured to run a VM migration. Another configuration requirement

for their is that I should be able to measure the energy consumption of

the migration, excluding the impact of load that is not generated by my

experiments. Moreover, I use machines capable to run a version of Xen

that allows to perform both live and non-live migration. I performed the

experiments on two sets of machines (m01-m02 and o1-o2) with different CPUs

and network cards/switch, to allow the validation of this model on different

hardware configurations. For each experiment, I employed paravirtualized

VMs mostly encountered in modern data centres as they ensure near-native

performance. For the migrating VMs, I chose 4 GBs of memory size to

assure a long enough migration time for the clear identification of the energy

consumption phases.

According to the analysis in Table 3.2, CPU-intensive workloads run-

ning on source/target hosts and memory-intensive workloads running on the

migrating VM have the highest impacts on the energy consumption VM mi-

gration. Therefore, I designed two families of experiments: CPULOAD and

MEMLOAD.

CPULOAD

I investigate the impact of VM workload on live and non-live migration using

two types of experiments: During the execution of each experiment in this

family, the migrating VM is also running a CPU-intensive workload. I made

this choice for clarity of presentation of my results and to clearly identify

in the traces the time intervals in which the migrating VM is running. For

this category of experiment I use both live and non-live migration, because

according to my analysis in both cases a difference in the energy consumption

58 CHAPTER 3. EXPERIMENTAL METHODOLOGY

will be noticed. Two experiments belong to this category, both of them are

detailed below:

CPULOAD-SOURCE investigates the impact of CPU-intensive work-

loads running on the source host by migrating a VM to an idle target host.

The load of the source is progressively increased from idle to 100% CPU util-

isation to quantify its impact on VM migration. I also consider the case in

which the VMs require more CPUs than the host can offer, to ensure some

multiplexing amongst them.

CPULOAD-TARGET investigates the impact of CPU-intensive work-

loads running on the target host by migrating a VM from a source host

running the migrating VM only. The load of the target is progressively in-

creased from idle to 100% CPU utilisation to quantify its impact. Also in

this experiment, I consider the effects of multiplexing on hardware resources.

For the CPU-intensive workload, I use an OpenMP C implementation of a

matrix multiplication algorithm for two reasons: it is used by many scientific

workloads running on data centres, and it can be easily parallelised allowing

to load all virtual CPUs of the VMs taking part in the experiments with

while it introduces only small communication and synchronisation overheads.

Concerning the VM configuration, I select the load-cpu and migrating-cpu

type among the instances described in Table 3.5b. I employ the load-cpu

VM instance to load the PM while migrating an instance of migrating-cpu

type. I assign as many CPUs to these instances as needed to increase the

load by 25% increments.

MEMLOAD

In this family of experiments study the effect of varying dirtying ratio in

the migrating VM on the migration process. To compare the impact of

the memory-intensive workloads with the CPU-intensive ones, I designed

experiments involving CPU-intensive workloads running on both source and

target, as follows:

3.5. VM MIGRATION BENCHMARKING 59

MEMLOAD-VM studies the impact of memory-intensive workloads by

increasing the percentage of memory pages dirtied in the migrating VM. The

source host is only running the migrating VM and the target is idle. This

experiment serves as the baseline for the rest of the memory intensive ones.

MEMLOAD-SOURCE investigates how live migration is differently im-

pacted by: (1) CPU-intensive workloads running on the source host and

(2) memory-intensive workloads running on the migrating VM. I perform a

live migration of a VM running a memory-intensive workload from a source

host running a CPU-intensive workload with increasing utilisation to an idle

target.

MEMLOAD-TARGET investigates how live migration is differently im-

pacted by: (1) CPU-intensive workloads running on the target host and (2)

memory-intensive workloads running on the migrating VM. I perform a live

migration of a VM running a memory-intensive workload to a target host

running a CPU-intensive workload with increasing utilisation. The source

host is running the migrating VM only.

These experiments employ live migrations only, since non-live migrations

have DR(v, t) = 0. For this category of experiments, I chose a memory-

intensive workload called pagedirtier implemented in ANSI C that continu-

ously writes in memory pages in random order. I fixed the memory allocated

to this application to 3.8 GB and only write in the memory pages in this

part of the memory. I made this choice to avoid swapping effects incurring

additional VM migration overheads, due to the continuous writing to the

NFS storage and a consequent reduction of the available bandwidth. I em-

ploy again the load-cpu VM instances for generating load on the hosts and

migrating-mem as the migrating VM (see Table 3.5b).

Workloads implementation

Concerning the VMs workloads, I needed CPU and Memory-intensive work-

loads. I developed my own implementation of such workloads, in order to (1)

reduce unnecessary computation who impact on memory, for what concern

60 CHAPTER 3. EXPERIMENTAL METHODOLOGY

Host CPU Kernel Gigabit Infiniband dom0 Xen
NIC NIC kernel version

k12 4× Linux BroadcomSDR Mellanox 3.0.4 4.2
k13 Opteron 8802.6.9-67BCM5704 MT23108

Table 3.3: Experimental hardware.

CPU-intensive and (2) specifically tune the workloads to the machines I use.

The implementation is described below:

• matrixmult : An OpenMP C implementation of a matrix multiplica-

tion. This application represents a CPU-intensive workload. I select

such workload for two main reasons: first of all, it is very common in

many scientific workloads running on data centres. Secondly, it can

be easily parallelized using OpenMP, thus allowing to load all the vir-

tual CPU of the VMs with a small communication and synchronization

overhead. The memory size I use is fixed to 205MB, to ensure that all

the computational load of the application is CPU-bound.

• pagedirtier : This application represents a Memory-intensive workload.

It is implemented as an ANSI C program that continuosly writes in

memory pages, accessing them in random order. I fix the memory

allocated to this application to 3.8GB and write only in the memory

pages in this part of the memory. I made this choice to avoid the effect

of swapping on the applications, as they add to the VM migration an

overhead related to the continuous writing to the NFS storage.

3.6 Hardware/software configuration

3.6.1 Network benchmarks experimental setup

I employ two machines, both equipped with Infiniband and Gigabit Ethernet

NICs, as specified in Table 3.3. I set the MTU on all machines to 16382

bytes for the Infiniband NICs in connected mode, to 2044 bytes in datagram

mode, and to 1500 bytes for the Gigabit Ethernet NICs. The machines are

3.6. HARDWARE/SOFTWARE CONFIGURATION 61

connected through two dedicated server-grade network switches to exclude

the impact of external network traffic. For each NIC and connectivity mode,

I run the benchmarks in three configurations (send, receive and n-uplex),

namely:

• ETH-SND/RCV, ETH for Gigabit Ethernet in send, receive and n-

uplex;

• IBC-SND/RCV, IBC for Infiniband connected in send, receive and n-

uplex;

• IBD-SND/RCV, IBD for Infiniband datagram in send, receive and n-

uplex.

For the energy measurements, I use Voltech PM1000+5 power analysers (with

0.2% accuracy) connected to the machines’ AC side and capable of reading

the power twice per second. For each benchmark, I select the input param-

eters to produce an execution time of at least 50 seconds, which allows to

have at least 100 readings in each execution. Table 3.4 summarises the ex-

perimental parameters. The data and time columns denote the termination

condition of each benchmark experiment. When the data size is set, the ex-

periment terminates after transferring the indicated amount of data (i.e. the

session and transport overheads), while when the timeout is set, the experi-

ment is terminated after the indicated time. The payload indicates the size

of the useful data in each packet, computed as a percentage of MTU minus

40 bytes (the size of IP and TCP headers), but for simplicity I denote it as “a

percentage of MTU”. The connections column indicates the number of con-

current connections through which the transfer is made. Finally, the burst

and throttle represent the concrete time intervals of continuous activity and

inactivity of the NICs. For the PSIZE benchmarks, I vary the maximum pay-

load between 30% and 100% of the NICs’ MTU. I also set the TCP NODELAY

flag to prevent packets smaller than MTU from being buffered. For PSIZE-

DATA I set the data size to 75GB, while for PSIZE-TIME I set a timeout of

5 minutes. For the n-UPLEX benchmark, I transmit a fixed amount of data

5http://www.farnell.com/datasheets/320316.pdf

http://www.farnell.com/datasheets/320316.pdf

62 CHAPTER 3. EXPERIMENTAL METHODOLOGY

Benchmark Size Time Payload Connections Burst Throttle
[GB] [m] [% MTU] [ms] [ms]

PSIZE-DATA 75 – 30 – 100 1 HD – –
PSIZE-TIME – 5 30 – 100 1 HD – –

n-UPLEX 150 – 100 1 – 8 FD – –
PATTERN-B 11 – 100 1 HD 1 – 10 10
PATTERN-T 11 – 100 1 HD 10 1 – 10

Table 3.4: Benchmark summary with focus metric in bold.

of 150GB (sending 75GB and receiving 75GB) over n FD connections. For

both PATTERN benchmarks, I set the data size to only 11GB, as the studied

traffic patterns considerably increase the transfer times. In the PATTERN-B

benchmark, I keep the throttle size constant to 10 ms and vary the burst size

to 2, 4, 6, 8, and 10 ms. Conversely, for the PATTERN-T benchmark, I vary

the throttle to 2, 4, 6, 8, and 10 ms with a constant burst size of 10 ms. I

run each experiment for ten times, which ensures an average coefficient of

variation of 0.053, and present the average of the results.

3.6.2 VM migration experimental setup

In this section I describe the configuration of the PMs and of the VMs I used

for my evaluations. To perform these experiments, I use two hosts capable

of running Xen virtualization software. These hosts should also be config-

ured to run a VM migration between them. Another requirement for their

configuration is that I should be able to measure the energy consumption

of the migration, excluding the impact of load that is not generated by the

experiments. I also need the machines to run a version of Xen that allows

to perform both live and non-live migration. I deploy two machines and a

networking switch, whose concrete hardware and software specifications are

shown in Table 3.3. I use Xen version 4.2.3, that includes both xm and xl

toolstacks.

The configuration for each VM is summarised in Table 3.5b. I need VMs

to (1) generate load on the source/target host and (2) migrate, in order to

perform the experiments. Therefore, I define two categories of VMs: load

3.6. HARDWARE/SOFTWARE CONFIGURATION 63

and migrating. The load VMs are used to generate load on source or target

host, while the migrating are migrated between source and target host. I

employ paravirtualized VMs, because they ensure a near-native performance

and are the most likely to be found in modern data centres. Each VM

except the dom-0 has a dedicated storage, accessible from both PMs through

NFS. I choose 4GB as size for the RAM memory because this gives a long

enough migration time to clearly identify energy consumption phases. The

instances load-cpu and migratingx4-cpu are used to run CPU-intensive

workloads. I allocate to them four virtual CPUs to allow them to use 25%

of the total CPU available on each PM. Concerning migrating-mem, I use

this instance to run Memory-intensive workloads. Each instance of these

VMs when running is pinned on different virtual CPUs, in order to remove

degradation of performance due to the sharing of one CPU by multiple VMs.

Finally, dom-0 represents the PM in the Xen abstraction.

Energy measurement methodology

I employ two Voltech PM1000+6 power measurement devices connected to

the AC side of the source and target hosts, measuring their instantaneous

power drawn at a frequency of 2 Hz in order to capture the power consump-

tion of a complete VM migration, including the pre- and post-migration

execution phases. For each experimental run, I start measuring the hosts’

power consumption and issue a VM migration only after the measured values

stabilise. Similarly, I stop the measurements after the power consumption of

the hosts stabilises too. I say that the power consumption of the host sta-

bilises when I read twenty consecutive power measurements with a difference

lower than 0.3%, that is below the measurement device’s accuracy. More-

over, I repeat each experiment until the difference in variance between one

run and the previous runs becomes less than 10%, resulting in at least ten

runs for each experiment. From the power readings and the time intervals,

I compute four energy metrics: initiation, transfer and activation energy of

the corresponding VM migration phases (see Sections 2.3.1 and 2.4.4), and

6http://www.voltech.com/products/poweranalyzers/PM1000.aspx

http://www.voltech.com/products/poweranalyzers/PM1000.aspx

64 CHAPTER 3. EXPERIMENTAL METHODOLOGY

.

Experiment Configuration of Configuration of Configuration of
source host target host migrating VM
CPU RAM CPU RAM instance CPU RAM

CPULOAD- [0− 100]% 5% idle 5% migrating100% 5%
SOURCE -cpu

CPULOAD- 1×migrating 5% [0− 100]% 5% migrating100% 5%
TARGET -cpu -cpu

MEMLOAD- idle 5% idle 5% migrating100%[5− 95]
VM -mem %

MEMLOAD- [0− 100]% 5% idle 5% migrating100% 95%
SOURCE -mem

MEMLOAD- 1×migrating 5% [0− 100]% 5% migrating100% 95%
TARGET -mem -mem

(a) Experimental design.

ID Number of Linux RAM Workload Storage
virtual CPUskernel size

load-cpu 4 2.6.32512MB matrixmult 1GB
migrating-cpu 4 2.6.32 4GB matrixmult 6GB
migrating-mem 1 2.6.32 4GB pagedirtier 6GB

dom-0 1 3.11.4512MB VMM 115GB

(b) VM configurations.

Machine Available Available Gigabit Gigabit Xen
virtual cpus RAM NIC switch version

m01 32 (16×Opteron 8356, 32GB BroadcomCisco Catalyst 4.2.5
m02 dual threaded) BCM5704 3750
o1 40 (20×Xeon E5-2690, 128GB Intel HP 4.2.5
o2 dual threaded) 82574L 1810-8G

(c) Hardware configuration.

Table 3.5: Experimental setup.

the total migration energy as the sum of the three metrics.

• Migration energy, as defined in Equation 2.38 is the total energy con-

sumed by the host while a migration is performed. The energy value is

measured in Kilojoules and is calculated integrating the power over the

time interval between the instant in which the migration begins and

3.7. SUMMARY 65

the instant in which the migration ends. It is obtained by summing

initiation, transfer and activation energy.

• Initiation energy, as defined in Equation 2.39 is the total energy con-

sumed by the host over the initiation phase. This value is measured in

Joules and is calculated over the time interval between the instant in

which migration begins and the instant in which transfer phase begins.

• Transfer energy, as defined in Equation 2.40 is the total energy con-

sumed by the host over the transfer phase. This value is measured in

Kilojoules and is calculated over the time interval between the instant

in which transfer begins and the instant in which transfer phase ends.

I assume that transfer phase ends when the state of the VM has been

transferred on the target host.

• Activation energy, as defined in Equation 2.41 is the total energy con-

sumed by the host over the transfer phase. This value is measured in

Kilojoules and is calculated over the time interval between the instant

in which transfer ends and the instant in which the VM is running on

the target host.

In addition, I also measure the CPU and memory consumption during each

migration using the dstat tool and average the values of all executions.

3.7 Summary

In this chapter I described two parts that are crucial to the training and val-

idation of my work. First, I described the code instrumentation framework,

that allows me to get fine grain measurements of each PM component that

is important for my model. Then, I described the applications that I have

instrumented to get such measurements, both for network transfer and for

VM migration. Combining these two parts I got the training and test sets

that I used, for the training and the validation of my model. In the next

sections, I describe the results of training and validation of these two parts

of the model (network transfer and VM migration).

66 CHAPTER 3. EXPERIMENTAL METHODOLOGY

Chapter 4

Network transfer modelling

4.1 Introduction

In this chapter I discuss the results of the execution of the benchmarks that

I described in Section 3.4.1. First, I give a short description of the network

hardware and the software stack for each interface, then I show the results

obtained through the execution of the benchmarks that I previously designed.

Afterwards, I show the coefficients for the Equation 2.16, obtained through

regression. Then, I show the error of the network model for the selected

validation sets and for VM migration. The chapter is organised as follows. I

review the network hardware and its software stack in Section 4.2. I analyse

the benchmarks’ results in Section 4.3 and I evaluate the accuracy of my

model in a VM migration scenario in Section 4.3.6. Finally, I discuss my

findings in Section 4.4.

4.2 Network hardware and software stack

In this section I describe the network hardware used in this work. I choose to

use Ethernet and Infiniband NICs, because they are to the best of my knowl-

edge the most used interconnection technologies used in data centres. While

communications running on Ethernet use the implementation of TCP/IP

provided by the OS, Infiniband software stack relies on kernel-bypass mech-

67

68 CHAPTER 4. NETWORK TRANSFER MODELLING

anisms and on RDMA-based capabilities. Such capabilities have a different

impact on energy consumption. Therefore, comparing these two software

stacks may give interesting insights about energy consumption of network

transfers. In the next two subsections, I describe both interfaces in detail.

Ethernet Ethernet is the most popular local-area network technology. It

defines several protocols which refer to the family covered by the IEEE 802.3

standard using four data rates:

• 10 Mbps for 10Base-T Ethernet, in IEEE 802.3;

• 100 Mbps, also called Fast Ethernet, in IEEE 802.3u;

• 1000 Mbps, also called Gigabit Ethernet, in standard IEEE 802.3z;

• 10-Gigabit, also called 10 Gbps Ethernet, in standard IEEE 802.3ae.

I focus on Gigabit Ethernet because, along with the newer 10-Gigabit, it

is the most used interconnection technology in data centres. The minimum

frame size for Gigabit Ethernet (1000Base-T standard) is 520 bytes, while

the Maximum Transmission Unit (MTU) is 1500 bytes.

Infiniband Infiniband is a popular switch-based point-to-point intercon-

nection architecture that defines a layered hardware protocol (physical, link,

network, transport), and a software layer to manage the initialisation and the

communication between devices. Each link can support multiple transport

services for reliability and multiple virtual communication channels. The

links are bidirectional point-to-point communication channels that can be

used in parallel to achieve higher bandwidth. Infiniband offers a bandwidth

of 2.5Gbps in its single data rate version used in this work for comparison

with Gigabit Ethernet. TCP/IP communications are mapped to the Infini-

band transport services through IP over Infiniband (IPoIB) drivers provided

by the OS. An Infiniband NIC can be configured to work in two operational

modes.

4.3. EXPERIMENTAL RESULTS 69

Datagram is the default operational mode of IPoIB described in RFC

4391 [100]. It offers an unacknowledged and connectionless service based on

the unreliable datagram service of Infiniband that best matches the needs of

IP as a best effort protocol. The minimum MTU allowed is 2044 bytes, while

the maximum is 4096 bytes.

Connected mode described in RFC 4755 [101] offers a connection-

oriented service with a maximum MTU of 2GB. Using the connected mode

can lead to significant benefits by supporting large MTUs, especially for large

data transfers.

Setting Infiniband in one of these two modes results in mapping a TCP

communication on a different Infiniband transport service. For this reason,

I measure the energy consumption of an Infiniband network transfer in both

modes.

4.3 Experimental results

In this section I present the results of my experiments.

4.3.1 BASE

NIC
Machine Network Execution Average Energy Energy

energy [kJ] energy [kJ] time [s] power [W]×packet[mJ]×byte [nJ]

ETH-SND 291.8 6.01 674 8.92 0.11 73
ETH-RCV 291.3 5.94 673 8.80 0.10 71.9
IBC-SND 131.6 1.58 307 5.14 0.54 20.0
IBC-RCV 133.0 2.26 308 7.36 0.78 28.8
IBD-SND 182.1 6.33 414 15.3 0.16 78.3
IBD-RCV 175.6 5.72 401 14.3 0.14 71.0

Table 4.1: BASE benchmark results (I).

I observe in Table 4.1 a considerable difference in energy consumption for

running the BASE benchmark. The immediate finding is that transferring

the same quantity of data over Infiniband in connected mode is more efficient

70 CHAPTER 4. NETWORK TRANSFER MODELLING

Configuration
Average Energy per packet Energy per byte

power [W] sent/received [mJ] sent/received [nJ]

ETH-SND 8.92 0.11 73
ETH-RCV 8.80 0.10 71.9
IBC-SND 5.14 0.54 20.0
IBC-RCV 7.36 0.78 28.8
IBD-SND 15.3 0.16 78.3
IBD-RCV 14.3 0.14 71.0

Table 4.2: BASE benchmark results (II).

than the other alternatives in terms of energy and time. I can also observe

that Infiniband’s energy consumption significantly differs between sending

and receiving operations: 30% less energy for sending than receiving in con-

nected mode, and 10% less energy for receiving compared to sending. It is

also noteworthy that, even in this simple benchmark, the network energy con-

sumption is between 1.58 and 6.33 kJ, which can potentially be up to 20% of

energy consumption in a node with lower idle power consumption. The other

metrics provide supplementary insight into these NICs’ energy efficiency. Al-

though it might appear that the Infiniband in connected mode is more energy

efficient with the lowest average power in operation, this only holds true when

the two communicating parties require large amounts of on-hand data to be

transferred. When the communication is message centric and the volume of

effective data is low, resulting in a high number of packets being transmitted,

the Gigabit Ethernet NIC is the more energy-efficient choice, closely followed

by Infiniband in datagram mode. In conclusion, these preliminary findings

hint that an energy efficient network communication depends on the nature

of the traffic generated by the application. For data intensive traffic in ap-

plications such as data warehousing and content streaming or delivery, the

more energy-efficient network is Infiniband configured in connected mode.

On the other hand, for finer-grained traffic and real-time message exchanges

such as low traffic databases and online games, Gigabit Ethernet is more

efficient. The following experiments give further assessment of the energy

consumption of the two networks with respect to traffic characteristics.

4.3. EXPERIMENTAL RESULTS 71

4.3.2 PSIZE

I begin with the PSIZE benchmark, focused on the influence of the payload

size on networks’ energy efficiency.

PSIZE-DATA. This benchmark evaluates the impact of payload on en-

ergy consumption, when sending a fixed amount of data of 75GB with a

payload of 30% to 100% of MTU. The results in Figure 4.1a show that the

energy consumption of the software stacks of the studied NICs is inversely

proportional to payload, the most efficient operational point being reached

for the maximum payload. Also noteworthy is the significantly better scala-

bility in terms of energy when employing Infiniband NIC in connected mode:

36% energy consumption increase for a 50% decrease in payload, versus 84%

for Gigabit Ethernet and 79% increase for Infiniband in datagram mode.

Analysing the other metrics presented in Figure 4.1, I can identify in detail

the energy-to-payload relation. Figure 4.1b suggests that, while for Infini-

band in connected mode the energy consumption per transferred packet is

proportional to its payload, it is relatively constant in the case of Infiniband

in datagram mode and Gigabit Ethernet. Conversely, Figure 4.1c reveals a

stronger inverse correlation between the payload and the energy consump-

tion per transferred effective byte. The Infiniband in datagram mode and the

Gigabit Ethernet NICs are affected in terms of energy efficiency by a payload

decrease, the energy consumption per effective byte nearly tripling at a 30%

of MTU payload. This behaviour is less severe for Infiniband in connected

mode, the energy per byte doubling for a payload of 30% of MTU.

PSIZE-TIME. I present the resulting average power consumption in Fig-

ure 4.1d, each point representing the cumulated power for send and receive

operations. The main finding of this experiment is that the energy con-

sumption of both Infiniband and Gigabit Ethernet NICs is not exclusively

correlated with running time. I observe that while Infiniband (regardless of

its operational mode) consumes in average less power with lower payloads,

Gigabit Ethernet is more power efficient at higher payloads. Further in-

vestigation revealed that Gigabit Ethernet’s high power efficiency for larger

72 CHAPTER 4. NETWORK TRANSFER MODELLING

0 20 40 60 80 100

0
5

10
15

Payload [% of MTU]

N
et

w
or

k
en

er
gy

 c
on

su
m

pt
io

n
[k

J]

ETH−SND
ETH−RCV
IBC−SND
IBC−RCV
IBD−SND
IBD−RCV

(a) PSIZE-DATA: energy consumption.

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Payload [% of MTU]
E

ne
rg

y
pe

r
pa

ck
et

 [m
J]

ETH−SND
ETH−RCV
IBC−SND
IBC−RCV
IBD−SND
IBD−RCV

(b) PSIZE-DATA: energy per packet.

0 20 40 60 80 100

0
50

10
0

15
0

20
0

Payload [% of MTU]

E
ne

rg
y

pe
r

by
te

 [n
J]

ETH−SND
ETH−RCV
IBC−SND
IBC−RCV
IBD−SND
IBD−RCV

(c) PSIZE-DATA: energy per byte.

0 20 40 60 80 100

0
5

10
15

20
25

30

Payload [% of MTU]

A
ve

ra
ge

 P
ow

er
 [W

]

ETH
IBC
IBD

(d) PSIZE-TIME: Cumulated send and re-
ceive average power.

Figure 4.1: PSIZE benchmark results.

payloads is likely due to driver optimisations, as I noticed a 32% decrease in

CPU utilisation between the transfers with payloads set at 30%, respectively

100% of MTU. The CPU utilisation was constant for all Infiniband transfers

in both modes.

To conclude, energy consumption of the networks is inversely proportional

4.3. EXPERIMENTAL RESULTS 73

to the maximum payload size. Second, Gigabit Ethernet and Infiniband in

datagram mode are better suited for lightweight, mixed traffic (with vary-

ing payload sizes), while Infiniband connected is by far the most energy

efficient for non-fragmented traffic. Finally, network energy consumption is

not exclusively time-related, thus one cannot optimise for time and expect

proportional savings.

4.3.3 n-UPLEX

I observe in Figure 4.2a a considerable increase in the energy consumption

of Gigabit Ethernet and Infiniband in datagram mode with more concurrent

connections. The trend has a piecewise linear shape and is relatively sim-

ilar for the power traces shown in Figure 4.2b. In contrast, Infiniband in

connected mode shows a decreasing energy consumption with the increase in

concurrent connections. Moreover, although Infiniband in connected mode

consumes the least energy for transferring the fixed data amount for multiple

connections, it is clearly exhibiting the highest average power consumption.

This raises a question regarding the NICs’ performance in terms of transfer

bandwidth in this contention scenario. I present in Table 4.3 a compari-

son between the variation of the achieved bandwidth, consumed energy, and

CPU utilisation between the two extreme cases studied: (1) the network

contention case with eight concurrent FD connections and (2) the single FD

connection. The results reveal a significant increase of 72% in bandwidth

for the Infiniband connected, with a 19.1% average power increase. This

variation of its power state with performance (in terms of bandwidth), is

the reason of its energy efficiency. At the other end, Gigabit Ethernet ex-

hibits the highest increase in energy consumption of almost 50% with only a

marginal 2.5% increase in bandwidth. The considerable average power con-

sumption increase in all cases stems from both (1) NICs requiring more power

to handle the increased load and (2) increasing CPU overheads for manag-

ing multiple simultaneous connections. This observation is supported by the

non-proportional energy consumption versus the CPU utilisation increase

shown in Table 4.3. Finally, the increase of CPU utilisation for Infiniband in

74 CHAPTER 4. NETWORK TRANSFER MODELLING

connected mode is 130.15% higher than the other two configurations due to

the increased bandwidth requiring faster data preprocessing.

1 2 3 4 5 6 7 8

0
5

10
15

20
25

Number of connections

N
et

w
or

k
en

er
gy

 c
on

su
m

pt
io

n
[k

J]

ETH
IBC
IBD

(a) Network energy.

1 2 3 4 5 6 7 8

0
5

10
15

20
25

30
35

Number of connections

A
ve

ra
ge

 p
ow

er
 [W

]
ETH
IBC
IBD

(b) Average power.

Figure 4.2: n-UPLEX benchmark results.

Metric
Variation [%] (8 vs 1 connections)
ETH IBD IBC

Bandwidth +2.49 +4.39 +72.03
Energy +45.80 +37.33 −31.03
Power +49.43 +43.37 +19.11
CPU +38.62 +38.23 +130.15

Table 4.3: Variation of relevant metrics with number of concurrent connec-
tions.

In summary, in a connection concurrency environment significant power

consumption penalties occur, the Infiniband in connected mode being the

best choice in terms of energy efficiency. The increased power consumption

is due to a higher NICs’ power state and to processing overheads.

4.3. EXPERIMENTAL RESULTS 75

4.3.4 PATTERN

These two experiments study the energy consumption of the NIC software

stacks for different communication patterns.

0 2 4 6 8 10

0
5

10
15

20

Burst [ms]

N
et

w
or

k
en

er
gy

 c
on

su
m

pt
io

n
[k

J]

ETH−SND
ETH−RCV
IBC−SND
IBC−RCV
IBD−SND
IBD−RCV

(a) PATTERN-B.

0 2 4 6 8 10

0
5

10
15

20

Throttle [ms]

N
et

w
or

k
en

er
gy

 c
on

su
m

pt
io

n
[k

J]

ETH−SND
ETH−RCV
IBC−SND
IBC−RCV
IBD−SND
IBD−RCV

(b) PATTERN-T.

Figure 4.3: PATTERN benchmark results.

PATTERN-B This benchmark evaluates the impact on energy of transfers

with varying burst intervals between 2 − 10 ms with a constant throttle of

10 ms. Figure 4.3a shows that Gigabit Ethernet is the least energy efficient

for all studied burst intervals. For short burst intervals (2-4 ms), Infiniband

datagram is surprisingly more efficient consuming up to 44% less energy than

in connected mode. For longer burst intervals, connected mode becomes

better consuming 17% less energy. for the 10 ms burst pattern.

PATTERN-T This benchmark evaluates the impact on energy of trans-

fers with a constant burst of 10 ms and a varying throttle between 2 − 10

ms. Figure 4.3b shows a stable, monotonously increasing energy consump-

tion with increasing throttle intervals. It is noteworthy that the energy con-

sumption increases at different rates for the different NICs and operational

76 CHAPTER 4. NETWORK TRANSFER MODELLING

δs δr θs θr ιs ιr Ks Kr ε ζ MAE RMSE NRMSE
[mJ] [mJ] [kJ] [kJ] [kJ]

ETH 73.5 71.3 19.821.60.60.60.350.35733.14-685.56 0.44 0.9 0.03
IBC 137.1181.413.914.20.20.2 0.6 0.8 12.6 -0.2 0.8 2.6 0.09
IBD 97.9 69.0 4.1 3.9 0.20.2 2.4 2.2 99.5 -82.1 0.8 0.9 0.05

Table 4.4: Model parameters and error.

modes: Gigabit Ethernet’s consumption increases by 110 J per ms of throt-

tle, while Infiniband by 49 J in datagram mode, and by 55 J in connected

mode. Although Infiniband connected is more energy efficient for the stud-

ied configurations, a basic extrapolation shows that for traffic patterns with

throttle intervals higher than 50 ms (i.e. a 1:5 burst to throttle ratio) the

datagram mode becomes the more energy efficient choice.

In conclusion, Infiniband in datagram mode shows the least variation in

energy consumption with different transmission patterns (good choice for

mixed/undetermined transmission patterns), while Infiniband in connected

mode exhibits a very good energy efficiency in a few particular cases (good

choice for long transmission bursts).

4.3.5 Model evaluation

I decided to use regression analysis, that has been successfully used in pre-

vious energy prediction and modelling works [102]. I employ the NLLS re-

gression algorithm. For extracting model parameters, I employ the data

gathered from ten experimental runs. I assess the accuracy of the models us-

ing two metrics: (1) mean absolute error (MAE) and (2) root mean squared

error (RMSE) that is also an absolute deviation metric, but more sensitive

to large deviations. The difference between the two metrics is a measure of

the variance in the individual deviations for all samples. I also present a

normalised value of RMSE (NRMSE) for metric-independent comparisons.

Table 4.4 shows the model parameters along with the error, calculated over

all the samples. The error is always below 9.4% which demonstrates a good

accuracy.

4.3. EXPERIMENTAL RESULTS 77

Configuration δs[µJ] δr[µJ] Ks[kJ] Kr[kJ] MAE [J] NRMSE

ETH 65.3 62.9 0.044 0.044 0.4192 0.1344
IBC 309.5 309.2 0.166 0.167 1.5015 0.1628
IBD 132.8 108.2 0.063 0.137 1.4076 0.0939

Table 4.5: Non-live migration model parameters and errors.

4.3.6 Using network transfer model for VM migration

After assessing the accuracy of the model in predicting network energy con-

sumption of my own benchmarks, I evaluate its accuracy in predicting net-

work energy consumption of VM migration on different NICs. I compare

the measured energy value with the value that I compute employing Equa-

tion 2.16 with the coefficients of Table 4.5. I use the same hardware con-

figuration as in Table 3.4, and a dom0 GNU/Linux kernel version 3.0.4 for

running Xen on one CPU with 512MB of RAM. I migrate a paravirtualized

VM running a 2.6.32 Linux kernel on one CPU, and set its memory size to

4GB to ensure a long-enough migration time for an accurate energy mea-

surement. I issue the migration by using Xen’s xm command line interface.

I measure the network energy consumption by instrumenting the machines

during the migration time and subtracting their static energy consumption. I

employ again Equation 2.16 to calculate VM migration energy consumption.

To determine tend (Equation 2.25) I set the DATAsend and DATAreceive param-

eters for the SND and RCV configurations to the memory size in bytes. I

set bsend and breceive to the migration time, tsend and treceive to 0, and finally

csend and creceive to 1. I extracted new α and K parameters because of the

different kernel version. In Table 4.5 I show the estimation error for four runs

(average coefficient of variation of 0.012). I use the range of values of each

execution as range for NRMSE. I observe that my model has a maximum

MAE of 1.5J, which corresponds to a 16.2% NRMSE. In most of the cases,

anyway, the NRMSE is below 9.4%, with a MAE lower than 0.9J, which

compared to the total energy consumption for migration (between 248J and

349J) is a quantity which does not significantly affect the accuracy of the

prediction.

78 CHAPTER 4. NETWORK TRANSFER MODELLING

Application characteristic Preferred NIC

Big data, continuous traffic/ Infiniband connected
non-live migration

Continuous message passing Gigabit Ethernet
live migration (low dirtying rate)

Multiple parallel connections Infiniband connected
Low communication/computation Infiniband datagram

live migration (low dirtying rate + high cpu usage)
High communication/computation Infiniband connected
live migration (high dirtying rate)

Table 4.6: Guidelines for NIC selection depending on communication char-
acteristics.

4.4 Discussion

These results show that there is no “best” NIC in terms of energy efficiency.

Furthermore, even setting the same NIC to different operational modes pro-

duces distinct results. Comparing for example the results from the PSIZE

(Section 4.3.2) and PATTERN (Section 4.3.4) benchmarks, I found out that

Infiniband connected outperforms Infiniband datagram for continuous data

transfers at maximum payload (72% less energy consumption), while for dif-

ferent communication patterns Infiniband in datagram mode is 44% more

efficient than in connected mode. Therefore, choosing the optimal NIC for

energy efficient communication depends on the application requirements and

its communication characteristics. For exchanging large data quantities, In-

finiband connected saves over 50% of energy compared to Gigabit Ethernet

or Infiniband datagram. However, if the application needs to frequently send

or receive small packets, Infiniband operating in datagram mode can be a

better choice. When the number of exchanged messages is more relevant

to the application than the quantity of data transferred, Gigabit Ethernet

presents the lowest energy consumption per transferred packet.

One could think on dynamically exploiting NIC capabilities by select-

ing at runtime the most energy-efficient interface for the given application’s

communication characteristics. Multiple applications contending for NICs

4.5. SUMMARY 79

can also contribute to the complexity of this task. As a first step towards

this challenging goal, I use this work to define the general guidelines for mak-

ing a correct decision from an energy efficiency perspective based applications

communication characteristics, as summarised in Table 4.6. Concerning VM

migration, as I previously observed in Figure 2.2 and in the description of

the VM migration process in Section 2.3.1, the only phase in which network

transfer is involved is the transfer phase. In this phase, the state of the VM

is transferred over the network. The way such transfer is performed is depen-

dent on the type of VM migration performed and on the type of workload

VM is executing. For example, in non-live migration the state of the VM

is sent over the network in a single transfer, whose length depends on (1)

the amount of VM RAM and (2) the bandwidth between S and T . How-

ever, things changes if a live migration is performed. In fact, traffic pattern

may change due to the continuous update of the VM state that is necessary

to perform the live migration. Therefore, there is no ”better” NIC to per-

form VM migration, and the only difference between energy consumption is

due of the bandwidth available. Therefore, my evaluations are performed

on Gigabit Ethernet, as at the time of writing it is one of the most used

interconnections technologies.

4.5 Summary

In this chapter a comparative analysis of the energy efficiency of today’s

mostly used NIC families in data centres, Gigabit Ethernet and Infiniband.

Analysis is performed by developing benchmarks aiming at stressing different

network transfer parameters. After performing the analysis, I use 20% of

the data collected in this phase as training set for the model I designed in

Section 2.4.2. Then, I evaluate the accuracy of the model for the rest of data

I collected and then I use the same model to predict energy consumption

of VM migration, showing that my model is capable to achieve an error

between 3 and 9% for network transfers and between 9.3 and 16.2% for VM

migration. The slight increase in the error is because, when using this model

to predict energy consumption of VM migration, I am just modelling the

80 CHAPTER 4. NETWORK TRANSFER MODELLING

network transfer part, ignoring the energy consumption due of the different

VM migration phases identified in Section 2.3.1. Thus, while this model

showed its accuracy for network transfers, it is still not enough to model VM

migration as not only energy consumption of transferring VM state over the

network has to be considered, but also the other parameters I identified in

Section 2.4.4. In the next section, I evaluate my model for VM migration

built over the network transfer model I validated in this chapter.

Chapter 5

VM migration modelling

5.1 Introduction

In this chapter, I discuss the results of the benchmarks’ execution for VM

migration. The benchmarks that I execute are the ones I described in Sec-

tion 3.5. First, I describe the power draw during the execution of each

benchmark, showing how the power draw varies through the execution of

each phase identified in Section 2.3.1. Then, I show the coefficients obtained

after the regression analysis, and use them to compute energy consumption

of VM migration, employing Equation 2.38. For power draw, I use instead

Equations from 2.44 to 2.46. Afterwards, I compare the results obtained

with my model with other state-of-the-art models for VM migration. The

chapter is organised as follows. I present the results of my experimental

validation in Section 5.2 based on the benchmarking methodology described

in Section 3.5. Finally, I perform a comparison with other state-of-the-art

models in Section 5.3.

5.2 Experimental results

In this section, I show the results of the experiments described in Section 3.5.

For each experiment I report the instantaneous power consumption traced

every 500 milliseconds (according to the resolution of the power measure-

81

82 CHAPTER 5. VM MIGRATION MODELLING

ment devices) which allows to easily identify the migration phases. I extract

the energy consumption for each phase by integrating the power over its

length. I average each result over ten experimental runs to ensure statistical

significance.

5.2.1 CPULOAD-SOURCE

 400

 500

 600

 700

 800

 900

 0 20 40 60 80 100 120

P
O

W
E
R

 [
W

]

TIME [sec]

0 VM
1 VM
3 VM
5 VM
7 VM
8 VM

(a) Non-live source.

 400

 500

 600

 700

 800

 900

 0 20 40 60 80 100 120

P
O

W
E
R

 [
W

]

TIME [sec]

0 VM
1 VM
3 VM
5 VM
7 VM
8 VM

(b) Non-live target.

 400

 500

 600

 700

 800

 900

 0 20 40 60 80 100 120

P
O

W
E
R

 [
W

]

TIME [sec]

0 VM
1 VM
3 VM
5 VM
7 VM
8 VM

(c) Live source.

 400

 500

 600

 700

 800

 900

 0 20 40 60 80 100 120

P
O

W
E
R

 [
W

]

TIME [sec]

0 VM
1 VM
3 VM
5 VM
7 VM
8 VM

(d) Live target.

Figure 5.1: CPULOAD-SOURCE results.

The results for the CPULOAD-SOURCE experiment displayed in Fig-

ures 5.1a and 5.1b show that the instantaneous power consumption of a

non-live migration follows the same trend for each CPU workload except the

case with eight VMs, when I have multiplexing on the machine’s CPUs. In

this case, I clearly see that on the source host (Figure 5.1a) the power con-

sumption trend follows a constant function, since it is proportional to the

CPU usage that never exceeds its hardware-imposed limit beyond which the

resources are shared between the VMs. In this case, the migrating VM is

5.2. EXPERIMENTAL RESULTS 83

suspended when the migration starts and the load on the host drops when

there is no multiplexing without affecting the power consumption.

Concerning the target (Figure 5.1b), I notice a slightly lower power con-

sumption from the beginning of the transfer phase when the source host has

full CPU utilisation because of the reduced bandwidth to the target host (due

to the 100% CPU load on the source host). A reduced bandwidth implies a

lower power consumption and a longer transfer phase.

For live migration (Figures 5.1c and 5.1d), I observe an increased power

consumption over the transfer phase due to the running VM because of: (1)

the additional power consumption for network transfers and (2) the increased

CPU usage of the virtualization software to handle the live migration. Con-

cerning the source host, I notice a constant power consumption in case of

CPU multiplexing, for the same reason as in Figure 5.1a.

Considering the power consumption on the target host (Figure 5.1d), I

observe no significant differences compared to the non-live migration, except

for a reduced consumption for the full CPU load with and without multi-

plexing. This is because the migrating VM is not suspended over the transfer

phase and thus, it still uses CPU resources on the source host. Therefore, the

source host is not able to exploit the full bandwidth available between the

two hosts, leading to a scenario similar to the one observed in Figure 5.1b.

I also notice a strong difference in power consumption before and after the

migration in the 25% load scenario because the power drawn of the source

host returns back to idle after the migration.

I conclude that CPU-intensive workloads have an impact on VM migra-

tion when running on the source, as bandwidth decreases when the CPU

is fully loaded causing a longer transfer phase and a consequently, a higher

energy consumption.

5.2.2 CPULOAD-TARGET

For the CPULOAD-TARGET experiment, I observe first in Figure 5.2a that

the impact on the power consumption of source host is minimal when chang-

ing the load on the target. Concerning the target measurements in Fig-

84 CHAPTER 5. VM MIGRATION MODELLING

 400

 500

 600

 700

 800

 900

 0 20 40 60 80 100 120

P
O

W
E
R

 [
W

]

TIME [sec]

0 VM
1 VM
3 VM
5 VM
7 VM
8 VM

(a) Non-live source.

 400

 500

 600

 700

 800

 900

 0 20 40 60 80 100 120

P
O

W
E
R

 [
W

]

TIME [sec]

0 VM
1 VM
3 VM
5 VM
7 VM
8 VM

(b) Non-live target.

 400

 500

 600

 700

 800

 900

 0 20 40 60 80 100 120

P
O

W
E
R

 [
W

]

TIME [sec]

0 VM
1 VM
3 VM
5 VM
7 VM
8 VM

(c) Live source.

 400

 500

 600

 700

 800

 900

 0 20 40 60 80 100 120

P
O

W
E
R

 [
W

]

TIME [sec]

0 VM
1 VM
3 VM
5 VM
7 VM
8 VM

(d) Live target.

Figure 5.2: CPULOAD-TARGET results.

ure 5.2b, I notice (1) a small increase in power drawn due to the network

transfer of the VM state and (2) a big increase in the power consumption

when the migration is finished and the VM is up and running on the target.

The impact of external load in this case is visible only when the target host

is fully loaded, where the power resembles a constant trend since the host

reached its CPU limit (see Equation 2.31).

For live migration (Figure 5.2c), I notice for the source host a small

increase in power consumption over the transfer phase due to: (1) the network

transfer of the VM state and (2) the CPU increase for handling the migration.

I do not notice any impact of the target load on this host except for the slight

difference in case of multiplexing due to the additional load on the target host

that prevents the VMM to use the full bandwidth. For the target host in

Figure 5.2d, I see similar trends to the non-live migration except that: (1) the

power drawn is slightly lower in the transfer phase and (2) the live migration

takes at least 60 seconds longer. However, since this tendency is present also

5.2. EXPERIMENTAL RESULTS 85

in the idle target case, it seems mostly related to hardware configuration

than the host load.

5.2.3 MEMLOAD-VM

For the MEMLOAD-VM experiment, I observe in Figures 5.3a and 5.3b that

the power consumption considerably changes with the dirtying ratio, with

the difference that for the target host it does not go back to the idle level

but slightly increases (since the VM is running on the target afterwards). On

both hosts, the drop in power consumption during the transfer phase grows

with the dirtying ratio because the VM experiences a longer suspension time

to complete the migration by sending the more dirty memory pages from

source to target.

 400

 450

 500

 550

 600

 650

 700

 750

 0 20 40 60 80 100 120 140 160 180

P
O

W
E
R

 [
W

]

TIME [sec]

5%
15%
35%
55%
75%
95%

(a) Source.

 400

 450

 500

 550

 600

 650

 700

 750

 0 20 40 60 80 100 120 140 160 180

P
O

W
E
R

 [
W

]

TIME [sec]

5%
15%
35%
55%
75%
95%

(b) Target.

Figure 5.3: MEMLOAD-VM results.

5.2.4 MEMLOAD-SOURCE

For the MEMLOAD-SOURCE experiment, I observe in Figure 5.4a that

the transfer phase increases with the CPU load on the source host and the

memory-intensive workload running on the VM. This slight increase is pro-

portional to the decrease in bandwidth utilisation due to the increased CPU

usage of the source. This tendency is better seen for high amount of loads

for the target host (Figure 5.4b), when I notice a considerable increase in the

transfer phase due to the reduced bandwidth. I also observe that the CPU

86 CHAPTER 5. VM MIGRATION MODELLING

load on the source host has an impact on the energy consumption of migra-

tion even in case of memory-intensive workloads, for which reason I included

it in Equation 2.45. Finally, I also notice on both hosts a considerable drop

in power consumption towards the end of the transfer phase because of the

VM suspension on the source due to the high dirtying ratio that transforms

the live migration in a non-live one (i.e. the VMs are not accessible from the

network during this time). The similarity with non-live migration is clear by

looking at Figures 5.1a and 5.1b.

 400

 500

 600

 700

 800

 900

 0 20 40 60 80 100 120 140 160 180 200

P
O

W
E
R

 [
W

]

TIME [sec]

0 VM
1 VM
3 VM
5 VM
7 VM
8 VM

(a) MEMLOAD-SOURCE, measurements
on source host

 400

 500

 600

 700

 800

 900

 0 20 40 60 80 100 120 140 160 180 200

P
O

W
E
R

 [
W

]

TIME [sec]

0 VM
1 VM
3 VM
5 VM
7 VM
8 VM

(b) MEMLOAD-SOURCE, measurements
on target host

Figure 5.4: MEMLOAD-SOURCE results

5.2.5 MEMLOAD-TARGET

For the MEMLOAD-TARGET experiment, I see in Figure 5.5a that the

transfer phase has a similar length on the source host, except for the slight

difference in case of multiplexing due to bandwidth limitations on the target.

The trends of the activation phase assume a different shape according to the

amount of load. On the target host (Figure 5.5b), I observe a constant trend

in power consumption except the idle case, when live migration becomes a

non-live one as I can see by comparing the highlighted areas in Figures 5.2a

and 5.2b.

5.2. EXPERIMENTAL RESULTS 87

 400

 500

 600

 700

 800

 900

 0 20 40 60 80 100 120 140 160 180 200

P
O

W
E
R

 [
W

]

TIME [sec]

0 VM
1 VM
3 VM
5 VM
7 VM
8 VM

(a) MEMLOAD-TARGET, measurements
on source host

 400

 500

 600

 700

 800

 900

 0 20 40 60 80 100 120 140 160 180 200

P
O

W
E
R

 [
W

]

TIME [sec]

0 VM
1 VM
3 VM
5 VM
7 VM
8 VM

(b) MEMLOAD-TARGET, measurements
on target host target

Figure 5.5: MEMLOAD-TARGET results

5.2.6 Regression analysis

In this section I use linear regression to compute the model coefficients I

identified in Section 2.4.4. For each phase identified in the theoretical model

(see Section 2.3.1) I use regression analysis based on the Non Linear Least

Square algorithm. Afterwards, I use the coefficients obtained for the power

functions defined in the Equations from 2.44 to 2.46. I select a training subset

of the power readings from each phase to extract the model coefficients and

use them afterwards as a model to predict the energy consumption. The

training set used for this purpose is the 20% of the readings obtained by

running the experiments on the machines m01 – m02. The coefficients for

non-live migration are summarised in Table 5.1, while the coefficients for live

migration are summarised in Table 5.2. To validate my model, I also used

the same coefficients to predict the energy consumption of non-live and live

migration on a different set of machines (o1 – o2). When checking the results

of the prediction on this new set, I observed that it was overestimating the

measured values by a constant factor because the bias obtained from the

training phase includes the idle power consumption of the PM. Therefore, I

changed the bias by subtracting the difference in idle power between the two

sets of machine. I use then Cm as bias for the prediction on (m01 – m02) and

Co for the prediction on (o1 – o2). The error for this model in both datasets

is shown in Table 5.3. The discussion of my model’s behaviour is presented

88 CHAPTER 5. VM MIGRATION MODELLING

in contrast to other state-of-the-art models in the next section. In the next

section, I show the error for energy consumption obtained with the obtained

coefficients.

Host Initiation Transfer Activation

α(i) β(i) Cm(i) Co(i)α(t) β(t) Cm(t) Co(t)α(a) β(a) Cm(a) Co(a)
S 1.711.41 708.3 165 2.4 1.081 421.74 2002.37 0 662.5 150
T 3.18 0 596.061622.565.492520.2142101.8817.01499.56100

1×10−6

2×10−7

Table 5.1: Coefficients for non-live migration.

Host Initiation Transfer Activation

α(i) β(i) Cm(i) Co(i)α(t) β(t) γ(t) δ(t) Cm(t) Co(t)α(a) β(a) Cm(a) Co(a)
S 1.711.41 708.3 165 2.4 1.5211.410.4 421.74 2002.37 0 662.5 150
T 3.18 0 596.061622.567.322 0 0.4520.2142001.8817.01499.56100

1×10−6

2×10−7

Table 5.2: Coefficients for live migration.

Model Host NRMSE NRMSE NRMSE NRMSE
(non-live) (live) (non-live) (live)

(m01 – m02) (m01 – m02) (o1 – o2) (o1 – o2)

WAVM3 Source 11.8% 11.8% 12.5% 12.7%
Target 12% 5% 16.3% 17.2%

Table 5.3: Normalised root mean square error (NRMSE) of my model on the
two datasets.

5.3 Comparison

In this section, I compare the accuracy of the model with three other mod-

els available in the literature that take into account different parameters to

5.3. COMPARISON 89

model energy consumption of VM migration: HUANG [16], LIU [17] and

STRUNK [18]. Next, I shortly describe each one of these models.

HUANG The model of Huang et al. [16] is based on the assumption that

the instantaneous power consumption P of each host is linear with the CPU

utilisation of the VM v at the instant t, loadcpu(v, t) [98]:

P (h, v, t) = αhuang(h) · loadcpu(h, t) + C(h), (5.1)

where the istantaneous power P (t) is linear by a factor of α and C is a

hardware-related constant. I obtain the energy consumption by integrating

P over the migration time [ms,me]:

Emigr(h, v) =
∫ me

ms

P (h, v, t) dt. (5.2)

This model perfectly suits scenarios when CPU utilisation has an impact

on VM migration, but does not suit scenarios that involve other parameters

(e.g. memory dirtying ratio, CPU load on migrating VM).

LIU The model of Liu et al. [17] is based on the assumption that energy

consumption for migrating VM v Emigr(v) depends only on the amount of

data DATA exchanged by the two hosts during the VM migration:

Emigr(h, v) = αliu · DATAliu(v) + C(h), (5.3)

In their work, the authors compute the amount of data exchanged during

migration as a function of VM memory size, memory transmission rate and

memory dirtying ratio. Moreover, since they assume transfer is performed

in several rounds, they compute the amount of data as the sum of the data

sent in each round:

DATAliu =
I∑
i=0

RAMmax(v)

BWnet(S, T)
· DR(v, i), (5.4)

90 CHAPTER 5. VM MIGRATION MODELLING

where I is the number of rounds, BW(S, T) is the bandwidth between S and

T and DR(v, i) the dirtying ratio over the round i. I use instead the amount

of data transferred measured with the network instrumentation as the DATA

value. In this model, αliu models the linear relationship between the trans-

ferred data and energy consumption and C(h) is a hardware-related constant.

For this reason, the model is perfectly suitable for predicting the energy con-

sumption of VMs workloads with high dirtying ratio. This model, however,

does not consider the CPU load which generates modelling errors in case this

has a high impact on the energy consumption. Moreover, it assumes that

homogeneous hosts have the same consumption during migration. However,

as stated also by [103], such an assumption could lead to inaccurate results.

STRUNK The model of Strunk [18] considers the VM memory size RAM(v)

and the network bandwidth between source and target BWnet(S) as parameters

in a linear model:

Emigr(h, v) = αstrunk · RAMmax(v) + β · BWnet(S) + Cstrunk(h), (5.5)

where αstrunk and βstrunk model, the linear relationship between VM size and

network bandwidth and C(h) is a hardware-related constant. This model

perfectly suits scenarios in which both hosts and the migrating VM are idle

and does not take their load into account. Even though such conditions are

very likely to happen in data centres [104], many works show the benefits

of consolidating VMs executing tasks to/from hosts that are not idle [105].

Therefore, having a model able to predict the energy consumption of VM

migration in different conditions can be helpful to decide whether this is

beneficial energy-wise.

I train these models using the same training set used to train my model

and the coefficients obtained for each model are summarised in Table 5.4.

Afterwards, I compute three error metrics on the test set: Mean Absolute

Error (MAE), Root Mean Square Error (RMSE) and Normalized Root Mean

Square Error (NRMSE). Each metric is summarised in Table 5.5. In the next

subsections, I compare the results of my model, named Workload-Aware

5.3. COMPARISON 91

Model Host α β C
HUANG Source 2.27 − 671.92

Target 2.56 − 645.776
LIU Source 2.43 − 494.2

Target 2.19 − 508.2
STRUNK Source 3.35 −3.47 201.1

Target 5.04 −0.5 201.1

Table 5.4: Training phase coefficients for LIU, HUANG and STRUNK mod-
els, calculated for the PM sets m01-m02 and o1-o2.

Model Host MAE RMSE NRMSE MAE RMSE NRMSE
(non-live) [kJ](non-live)(non-live)(live) [kJ] (live) (live)

WAVM3 Source 1.8 2558 11.8% 6.3 8432 11.8%
Target 1.7 1789 12% 3.6 4056 5%

HUANG Source 1.8 2587 12% 5.5 9234 15.7%
Target 1.8 2067 12.8% 7.1 9102 12.9%

LIU Source 4.8 5812 26.9% 9.8 12117 36.3%
Target 3.4 4121 25.3% 7 9622 29.4%

STRUNKSource 0.026 3824 17.7% 0.028 4547 35.4%
Target 0.058 5187 30% 0.019 4382 36.2%

Table 5.5: Comparison of WAVM3 with other models on dataset m01-m02.

Virtual Machine Migration Model (WAVM3), with the other three.

5.3.1 Non-live migration

By looking at Table 5.5, I observe that, among the analysed models, the one

of Huang et al. provides the most accurate estimation for non-live migration.

This is because non-live migration is mostly influenced by CPU usage which

is the only parameter that this model takes into consideration. Since my

model also takes CPU into account, I do not expect high variations in most

of the scenarios. However, it can happen that one host is not able to use the

full bandwidth if there is some multiplexing on the CPU. In such situations,

network utilisation drops because CPU is not able to exploit all the network

resources available and, therefore, network bandwidth cannot be ignored.

Since my model also takes into account network bandwidth, it manages to

92 CHAPTER 5. VM MIGRATION MODELLING

have better estimations (−0.2% NRMSE for source host, −0.8% NRMSE

for target host) when there is less network bandwidth available. Moreover,

even though the MAE for the two models is very similar, I observe that the

difference between RMSE and MAE is slightly higher for the model of Huang

et al., showing that my model’s estimation error has a lower variance too.

5.3.2 Live migration

The errors for the live migration are summarised in Table 5.5. Also in this

case, the model of Huang et al. performs considerably better because it

considers the CPU of source and target hosts, ignored by the other two, that

has a considerable impact on energy consumption during VM migration.

However, I notice an 18% increase in NRMSE versus the non-live migration

error for the source host and a 16.2% increase in NRMSE for target host.

This is because live migration should taken into account the CPU utilisation

and the dirtying ratio of the migrating VM that is still running during the

migration. This model performs better because these parameters are instead

considered, increasing the accuracy of prediction of Huang et al. by 3.9%

(11.8% vs 15.7% NRMSE) for the source host and by 7.9% (5% vs 12.9%)

for the target host.

5.4 Summary

In this chapter I performed a validation of the VM migration model described

in equations from 2.4.4. To perform my validation, I set up a small data

centre with two sets of different PMs, with a virtualization environment

based on Xen hypervisor. Then, I developed purposely designed benchmarks

mimicking the workload characteristics highlighted in Section 2.3.1. Based

on the measurements I collected in this phase, I used linear regression to

obtain the coefficients of Equations 2.44, 2.45 and 2.46. Then I validated the

model on two different test sets, obtained by measuring power consumption

on two different sets of PMs. Finally, I performed a comparison with other

existing models for VM migration. First, I used linear regression to get the

5.4. SUMMARY 93

coefficients needed by such models, using the same training set I used for

my model. Then I compared their results with the measurements in the test

set, showing that my model improves their accuracy. However, in order to

be useful, such model should be used for simulations of Cloud data centres.

In the next chapter, I describe the implementation of this model inside a

simulation environment.

94 CHAPTER 5. VM MIGRATION MODELLING

Chapter 6

Integration into simulators

6.1 Motivation

In this chapter, I show how I port the previously designed models from

Chapter 2 inside a Cloud simulator. Doing so allows my model to be used in

more extensive cases. I implemented it in a Cloud infrastructure simulator

called DISSECT-CF [106] which is integrated as a backend of the user-side

GroudSim simulator [82]. I show that implementing in this simulator the

model I designed in Chapter 2 increases the accuracy of the simulation of VM

migration and similar major activities involved in the workload consolidation

process, confirming the results of the validation process that I describe in

Chapters 4 and 5. My ultimate aim is to provide the distributed systems

research community with a model that is: (1) easy to implement, and (2)

able to capture the behaviour of different types of data centres components.

I validated my implementation by comparing it with real-life measure-

ments from various benchmarks executed on VMs migrated across two dif-

ferent sets of hosts in a private Cloud. This way, I managed to: (1) improve

the energy models of GroudSim/DISSECT-CF with the help of piecewise

linear regression, (2) validate my new model’s implementation under differ-

ent kinds of operational scenarios with and without VM migration, and (3)

achieve a 45.2% improvement in normalised error (NRMSE) compared to the

state-of-the-art CloudSim simulator.

95

96 CHAPTER 6. INTEGRATION INTO SIMULATORS

The chapter is organised as follows. First, I evaluate the simulation’s

accuracy in Section 6.4. I describe in Section 6.3 the implementation of

the model in the GroudSim and DISSECT-CF simulators, and evaluate its

performance and accuracy in Section 6.4.

6.2 Model evaluation

In the next section, first I describe the training and validation for the energy

model I defined in Section 2.4. I show the coefficients obtained through linear

regression, as well as the validation on the real measurements, obtained using

the methodology described in Chapter 3.

6.2.1 Regression modelling

Here I show the regression modelling and the validation of the system model

that I use in my simulator, described in Section 2.4. While Pmax(h) and

Pidle(h) are obtained by measuring the idle and maximum power consump-

tions with thr power measurement devices, the coefficients α(h) and β(h)

are extracted by using the CubiST 1 tool. I chose this tool because it gen-

erates rule-based regression models with respect to the model designed for

CPU power consumption from Equation 2.20. I imposed to the tool to gen-

erate no more than two rules for simplicity reasons. As training set, I chose

a subset of 20% of the measurements and used the rest for validation and

evaluation. To improve the model’s accuracy, I also employed the 10-fold

cross-validation provided by the CubiST tool. I employ two error metrics:

the Mean Absolute Error (MAE) and the Normalised Root Mean Square

Error (NRMSE). The validation results shown in Table 6.1 using a test set

of 80% of the measurements show a NRMSE below 7% for both data sets,

with an average MAE of 18.28W on the {m01, m02} machines, and of 11.5W

on the {o1, o2} machines. I also compared the piecewise linear prediction

with the linear model in [32] showing a reduction in NRMSE of 9.4% (15.6%

versus 6.2%) on {m01, m02} machines and of 7.1% (13.9% versus 6.8%) on

1https://www.rulequest.com/cubist-info.html

https://www.rulequest.com/cubist-info.html

6.3. SIMULATION FRAMEWORK 97

Model Machine L α β γ δ PidlePmaxMAE NRMSE
set [W] [W] [W] [%]

WAVM3+m01, m02 0.12 5.29 0.68 0.05 0.1 501 840 18.28 6.2
DCM o1, o2 0.12 4.33 0.47 0.05 0.1 164 382 11.5 6.8
Linear m01, m02 284.974 618.67 47.8 15.6

o1, o2 165.08 212.563 23.7 13.9
Cubic m01, m02 209.317 695.684 69.2 23.6

o1, o2 140.753 235.776 37.3 20.4

Table 6.1: Model coefficients and errors.

{o1, o2} machines. The improvement is even higher compared with the cubic

model in [80], with a reduction in NRMSE of 17.4% (23.6% versus 6.2%) on

the {m01, m02} machines and of 13.6% (20.4% versus 6.8%) on {o1, o2}.

6.3 Simulation framework

In this section, I describe the simulation framework in which I implement

the models consisting of two main parts: GroudSim, which provides the

user side of the IaaS Cloud, and DISSECT-CF, which provides the internal

infrastructure side.

6.3.1 GroudSim

GroudSim is a Java-based simulation toolkit for scientific applications run-

ning on Grid and Cloud infrastructures, depicted in Figure 6.1. GroudSim

uses a discrete-event simulation toolkit consisting of a future event list and

a time advance algorithm that offers improved performance and scalability

compared to other process-based approaches [33]. The simulation framework

supports modelling of Grid and Cloud computational and network resources,

job submissions, file transfers, as well as integration of failure, background

load, and cost models. An advanced textual and visual tracing mechanism

and a library-independent distribution factory give extension possibilities to

the simulator. New tracing mechanisms can be easily added by implementing

new handlers or filters in the event system, and additional distribution func-

98 CHAPTER 6. INTEGRATION INTO SIMULATORS

Figure 6.1: GroudSim architecture.

tions can be included by adding a new library and writing an appropriate

adapter. GroudSim focuses on the user-side of IaaS Cloud computing and is

currently used as an additional backend in the ASKALON system enabling

users to perform seamless development, debugging, simulation and execution

of Grid/Cloud applications using the same interface [83].

6.3.2 DISSECT-CF

As shown in Figure 6.1, GroudSim lacks knowledge of the internal IaaS in-

frastructure. Since this knowledge is essential for the simulation of energy

consumption in data centres, I connected it to DISSECT-CF that is a com-

pact and highly customisable open source Cloud simulator with special focus

on the IaaS systems. Figure 6.2 summarises the DISSECT-CF architecture

with its five major subsystems:

6.3. SIMULATION FRAMEWORK 99

Infrastructure Management

IaaSService
VM Scheduling PM Scheduling Repository

Infrastructure Simulation
PMVM Network Node

Unified resource sharing

ResourceSpreader

Resource
Consumption

Resource
Scheduler

Energy Modeling

Energy Meter

Power State Consumption
Model

Event system
Timed Deferred Event

Figure 6.2: DISSECT-CF architecture.

• Event system for providing a unified time reference;

• Unified resource sharing for modelling the sharing of the data centre

resources.

• Energy modelling for simulating energy usage patterns of individual

components (CPU, network, storage);

• Infrastructure simulation for modelling IaaS components, such as PMs,

VMs and network entities;

• Infrastructure management encapsulating scheduling and other func-

tionalities (e.g., VM instantiation, PM startup/shutdown...) typical to

real-life Clouds.

In this work, I mostly focus on three components, the energy modelling, the

unified resource sharing and the infrastructure simulation, briefly outlined in

the following subsections.

100 CHAPTER 6. INTEGRATION INTO SIMULATORS

Figure 6.3: Interaction between GroudSim and DISSECT-CF.

6.3.3 DISSECT-CF energy extensions

This section describes the design and implementation of the energy model

inside the DISSECT-CF infrastructure simulator [106] and integrated in the

user-oriented GroudSim simulator [84]. I provide a closer look to each module

in the following sections.

Energy modelling

In this module, I extended the ConsumptionModel class with two subclasses

(CPUConsumptionModel and LinearConsumptionModel) to model the in-

stantaneous power consumption consumption according to Equations 2.20

and 2.28.The α(h) and β(h) parameters, the idle Pidle and maximum Pmax

powers, as well as the L(h) parameter in Equation 2.20 are set by the user

when configuring the simulation. From the combination of these parameters,

I get the CPU power consumption Pcpu(h, t). Similarly, the γ(h) and δ(h)

parameters in Equation 2.28 define the network and storage power consump-

tions Pnet(h, t) and Pio(h, t). Each class provides an evaluateConsumption(double

load) method which, when queried, gives the instantaneous power consump-

tion according to the instantaneous load represented by the load parameter

that models the relative use of the particular resource (e.g. CPU, network,

6.3. SIMULATION FRAMEWORK 101

storage). For CPU, network and I/O load I refer to the equations in the

model section, respectively 2.5, 2.6 and 2.7.

Unified resource sharing

In this module, I added support for tasks consuming not only CPU, but

also memory resources. This is especially important for live migration, since

its time and energy consumption is influenced by the way the memory is

used. In [92], I identified the memory dirtying ratio (i.e. the percentage of

memory pages marked as dirty over a certain time interval) as one of the

most impacting parameters on energy consumption of VM live migration.

To support this simulation, I extended the ResourceConsumption class to

allow the user specify the number of memory pages used by a task and its

memory dirtying ratio.If no dirtying ratio is specified during task creation,

the task is considered as not modifying its memory pages during execution.

Infrastructure simulation

I based the extension of this module on the studies performed in [92]. To add

live VM migration capabilities to DISSECT-CF, both VirtualMachine and

PhysicalMachine classes have been extended.In the VirtualMachine class,

I added methods allowing the simulation of live migration in six steps.

Initial state transfer The first step of live VM migration is moving the

actual state of the VM to the target host without suspending the VM. For

this, the hypervisor creates a memory image of the migrating VM and sends

it to the target host. I simulate this in multiple steps. First, I allocate

a matching resource set for the VM on the target host. If the allocation

succeeds, I create a storage object of the same VM memory size and simulate

its transfer using plain TCP.

Continuous update Since the VM is still running, its state in memory

may be modified during the its transfer to the target host. To have a consis-

tent image on the target, I need to transfer these modifications too, requiring

102 CHAPTER 6. INTEGRATION INTO SIMULATORS

multiple transfers before reaching a consistent state on the target. Xen ter-

minology names each transfer as pre-copy round consisting of two steps:

1. Identify changes in the VM’s state and transfer them to the target host.

In real-life, the hypervisor monitors these changes by marking memory

pages as dirty if they have been modified by the VM since the initial

transfer or the last update. In the simulator, I calculate the amount of

dirtied pages called Written Working Set (WWS) by using the memory

dirtying ratio parameter defined in Section 6.3.3 in the identifyWWS()

method:

WWS (v, t) = DR(v, t) ·∆t, (6.1)

where dr is the dirtying ratio (typical amount of pages dirtied in a

second) and ∆t is the time since the initial transfer or last update.

The identifyWWS() method returns a storage object of the size of the

WWS.

2. Update the state of target host with modifications occurred in the source

during state transfer. Once I identify the WWS, I need to transfer it

to the target host similarly as in the initial transfer step.

In real-life, the hypervisor performs this phase until a termination criteria is

reached (otherwise the migration could run for an indefinite amount of time).

In the simulator, I employ the same termination criteria used in Xen’s live

migration [107]: (1) WWS ≤ 256 or (2) the maximum number of pre-copy

rounds is reached. The maximum number of pre-copy rounds can be either

a constant value or dependent on configuration parameters. In Xen, the

amount of pre-copy rounds is dependent on the bandwidth levels set inside

the configuration. This is because the main focus of VM migration imple-

mentation inside Xen hypervisor is to save network bandwidth. To this end,

Xen users set inside its configuration files a set of bandwidth levels that are

used for VM migration. In the first round, the hypervisor starts the transfer

using the lowest bandwidth level set inside the configuration file. Then, if

WWS ≥ 256, the next bandwidth level is used in the following round, until

either this condition is reached or the maximum bandwidth level is reached. I

6.3. SIMULATION FRAMEWORK 103

implemented the same algorithm in the simulator, as validation is performed

by using data collected measuring Xen hypervisor. In my implementation, it

is possible for the user to set a new termination criterion by extending the

VirtualMachine class and overriding the migrateLive method accordingly.

Suspend the VM Once the pre-copy phase is terminated, the VM is

suspended to allow the transfer of its last state modifications to the target

host. To achieve this, the simulation extension suspends each task running

on the VM by using the suspend method, and then sends the modifications

performed since the last pre-copy round to the target host, similar to the

pre-copy phase.

Resume the VM on the target If no error occurred until this point,

the state of the VM on the target host is coherent with the source host.

Therefore, I resume the tasks suspended in the previous state so that the

VM is effectively running on the target host.

Destroy the VM on source After the new VM is resumed, it is possible

to release the resources previously owned by the VM on the source host using

the destroy() method on the instance of the VM running on the source host.

6.3.4 GroudSim/DISSECT-CF

I display in Figure 6.3 how to obtain DISSECT-CF energy readings in GroudSim.

To measure the energy consumption in a data centre, I need two basic infor-

mation: the PMs and their load. For this reason, this operation is performed

by the IaaS Service of DISSECT-CF responsible for both instantiating the

data centre infrastructure and allocating a VM to a suitable PMs. For this

purpose, the IaaS Service meter attaches to each host defined in the data cen-

tre an EnergyMeter. For each host, I define a ConsumptionModel for CPU,

network and storage that defines the instantaneous power consumption of

each component, as discussed in Section 6.3.3. Energy meters collect these

instantaneous power consumption values with a user defined frequency and

104 CHAPTER 6. INTEGRATION INTO SIMULATORS

calculate the energy consumption based on the simulated time spent since

the last power measurement. At the end of the simulation, the IaaS Service’s

meter aggregates the energy consumption for the entire data centre.

6.4 Evaluation

In this section, I evaluate my simulated energy model for VM migrations by

first describing the selected benchmarks and the experimental testbed. Then,

I describe how I simulate the execution of these benchmarks on the top of

GroudSim/DISSECT-CF. Finally, I compare the results of the simulations

with energy traces collected from real executions in the simulated Cloud.

For benchmarking the implementation of the model inside the simulator,

I employed the benchmarks I defined in Section 3.5 and published in [92].

I made this choice because: (1) they already proved their effectiveness in

testing the VM migration model, and (2) they allow to check the accuracy of

CPU, network and storage models by varying the CPU load and the dirtying

ratio, which are the parameters that mostly affect the VM migration.

6.4.1 Benchmarking results

The measurements collected from the benchmarks’ execution are shown in

Figure 6.4 for the (m01, m02) machine set, and in Figure 6.5 for the (o1,

o2) machine set. In each chart, the measurements performed in this phase

are referred with a label starting with “Real” to distinguish it from the

DISSECT-CF results that are the output of the simulation (see the follow-

ing sections). I show them together with the simulation results for brevity

reasons. In each chart, I also distinguish between “-SRC” and “-TRG”

measurements taken on the source and target hosts. Each measurement

point is traced every 500m according to the power measurement devices’

resolution. I average each power reading over ten benchmark runs to en-

sure statistical significance. For non-live traces, I show the consecutive

execution of CPULOAD-SOURCE and CPULOAD-TARGET benchmarks.

Concerning live migration, I show the consecutive execution of CPULOAD-

6.4. EVALUATION 105

Host MAE-NONLIVE NRMSE-NONLIVE MAE-LIVE NRMSE-LIVE
Power Energy Power Energy Power EnergyPower Energy

[W] [J] [%] [%] [W] [J] [%] [%]

m01 42.97 4292.9 16.6 16.9 38.45 5345.8 15.5 8.1
m02 51.97 4179.5 18.3 15.1 67.33 6341.8 22 9.3
o1 11.98 2248.6 8.2 14.6 27.6 3375.5 18.4 11
o2 18.19 2417 14.6 13.2 48.1 5518 14.2 25.6

Table 6.2: Error for the selected machine sets.

SOURCE, MEMLOAD-VM, CPULOAD-TARGET, MEMLOAD-SOURCE,

and MEMLOAD-TARGET.

6.4.2 Simulation validation

After collecting the real world traces, I implement the same benchmarks

on the top of DISSECT-CF to evaluate the accuracy of my simulations.

I configure a micro data centre with two PMs matching the configuration

of the two kinds of machines I used during the regression modelling (see in

Section 6.2). I simulate the load by deploying VMs on the PMs and configure

each VM to have 4G of memory to resemble the configuration I used to build

my traces. To simulate the execution of the benchmarks, I assign to each

VM computing tasks resembling the execution of the selected workloads. I

simulate the execution of matrixmult by assigning to the VMs a computing

task with full CPU utilisation and a dirtying rate of 0.05, as measured over

the execution of the real benchmark. In this case, the increasing load on the

host is simulated by increasing the number of VMs allocated to the PMs.

Concerning pagedirtier, I also set the full CPU utilisation, but I vary the

dirtying rate for each experimental run as indicated in Table 3.5b. For the

non-live migration, I only vary the CPU load since varying the dirtying ratio

has an influence on live migration only.

106 CHAPTER 6. INTEGRATION INTO SIMULATORS

6.4.3 Simulation results

In this section, I compare the results obtained by the simulator with the

traces obtained from my experiments. I compute the MAE and NRMSE

error metrics on both instantaneous power and energy consumption on both

sets of machines. The results are summarised in Table 6.2 for both the

machine sets. I also compare in Figure 6.4 (for the (m01, m02) set) and

Figure 6.5 (for the (o1, o2) set) the power traces obtained from the simulator

with the real measurements. I observe that the simulation is able to provide

power values with a MAE not higher than 67.3W compared to the real ones.

This value is, however, influenced by the fact that in some cases the power

consumption is underestimated by around 100W like in Figure 6.4a (between

12 and 24min) and Figure 6.4b (between 0 and 14min) because the test

scenarios active during those minutes perform non-live migrations while both

hosts are idle In these situations, the simulator only considers the power

consumption caused by the network and storage despite some inherent CPU

consumption caused by these two operations. Thus, the simulator considers

idle CPU consumption for both hosts, despite slight CPU load caused by the

need for supporting the storage operations. This slight load, on the other

hand, leads to significant offsets in the power consumption model according

to the Figure 2.3. In future work, I aim at modelling this inherent CPU load

in a generic way to increase the accuracy of the simulator in these unlikely

test scenarios too. Nevertheless, NRMSE is in each case between 8% and 22%

for instantaneous power consumption, and between 8% and 25% for energy

consumption showing that the simulator, by employing my extentions, is able

to predict both energy and instantaneous power with good accuracy.

6.4.4 CloudSim comparison

In this section, I compare my simulations with the CloudSim [33] state-of-

the-art simulator because it is by far the most widely cited and used in the

distributed systems community. CloudSim employs a piecewise model [108]

for power consumption, ensuring a fair comparison to my work and allowing

simulations of different kinds of architectures.

6.4. EVALUATION 107

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0 5 10 15 20 25

P
O

W
E
R

 [
W

]

TIME [min]

Dissect-SRC
Real-SRC

(a) Non-live migration source.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0 5 10 15 20 25

P
O

W
E
R

 [
W

]

TIME [min]

Dissect-TRG
Real-TRG

(b) Non-live migration target.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0 10 20 30 40 50 60 70 80

P
O

W
E
R

 [
W

]

TIME [min]

Dissect-SRC
Real-SRC

(c) Live migration source.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0 10 20 30 40 50 60 70 80

P
O

W
E
R

 [
W

]

TIME [min]

Dissect-TRG
Real-TRG

(d) Live migration target.

Figure 6.4: Results for the (m01, m02) machine set.

I did not include DCSim [81] in my evaluation since it does not provide

VM migration support at the time of writing required for a fair comparison.

I further compared with simulators that use a piecewise linear model for

energy consumption only (i.e. CloudSim), since I showed in Section 6.2.1

that linear and cubic models are highly inaccurate for my testbed. For this

reason, I did not select SimGrid [32] despite its support for live migration [31]

since it uses a linear model for energy consumption 2 Finally, I did not select

GreenCloud [80] because it employs a cubic model.

Experimental setup

To perform my comparison, I implemented in CloudSim the same bench-

marks used for validating my model in Section 3.5. I initialized a CloudSim

2http://simgrid.gforge.inria.fr/simgrid/3.12/doc/group__SURF__plugin_

_energy.html#ga166ef80adc810f0990d13539ddfd8adc

http://simgrid.gforge.inria.fr/simgrid/3.12/doc/group__SURF__plugin__energy.html#ga166ef80adc810f0990d13539ddfd8adc
http://simgrid.gforge.inria.fr/simgrid/3.12/doc/group__SURF__plugin__energy.html#ga166ef80adc810f0990d13539ddfd8adc

108 CHAPTER 6. INTEGRATION INTO SIMULATORS

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 2 4 6 8 10 12 14 16 18

P
O

W
E
R

 [
W

]

TIME [min]

Dissect-SRC
Real-SRC

(a) Non-live migration source.

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 2 4 6 8 10 12 14 16 18

P
O

W
E
R

 [
W

]

TIME [min]

Dissect-TRG
Real-TRG

(b) Non-live migration target.

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 5 10 15 20 25 30 35 40

P
O

W
E
R

 [
W

]

TIME [min]

Dissect-SRC
Real-SRC

(c) Live migration source.

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 5 10 15 20 25 30 35 40

P
O

W
E
R

 [
W

]

TIME [min]

Dissect-TRG
Real-TRG

(d) Live migration target.

Figure 6.5: Results for the (o1, o2) machine set.

simulation with a data centre consisting of two PMs with the same specifi-

cations as in Table 3.5c.

Energy modelling CloudSim allows the user to employ a piecewise lin-

ear energy model. For each type of CPU used in the simulation, the user

needs to specify an array p with 11 power values, corresponding to the power

consumption at different CPU utilisation level, starting from idle to 100%

in steps of 10. According to the CPU utilisation level that I have in the

simulator, for CloudSim the power consumption of a PM h at a given time

instance is given by:

Pcloudsim(h, t) = p [dload cpu(h, t) · 10e] + δ · load cpu(h, t)−

− bload cpu(h, t)c
10

· 100, (6.2)

6.4. EVALUATION 109

where: δ = p[bloadcpu(h,t) · 10c]−p[dloadcpu(h,t) · 10e]
10

and loadcpu(h, t) is the CPU util-

isation of host h at time instance t as in Equation 2.20. This model is imple-

mented in CloudSim by the PowerSpecModelPower class which I extended

to model the two different CPU types used.

Benchmark execution In CloudSim, applications running on VMs are

modelled by instances of the CloudLet object for which it is possible to

specify the amount of CPU and memory used. I simulated each benchmark

by a CloudLet running on VMs with the same number of CPUs and memory

as in the real-world experiments. For the CPULOAD benchmarks, I set

the UtilizationModelFull to simulate full CPU utilisation. I could not

simulate the dirtying ratio of the MEMLOAD benchmarks because CloudSim

does not allow setting this parameter in the memory utilisation. Nevertheless,

I set UtilizationModelFull as the memory utilisation model to be sure that

the CloudSim implementations of the benchmarks are resembling the real

execution as much as possible. Each CloudLet uses all resources allocated to

the VMs. I simulated the load on the PMs by deploying the corresponding

number of VMs, as I do for the real benchmarks (see Chapter 3).

VM migration I simulated VM migration in CloudSim by extending first

the VMSelectionPolicy class to make sure that only one VM is selected

for migration, as I do in the benchmarks. Afterwards, I extended the class

VMAllocationPolicy to ensure that the selected VM is migrated to the

desired target. The VM migration is issued in CloudSim at regular intervals

determined by the SCHEDULING INTERVAL parameter. I set this parameter

to 40 that is the average time required by the power consumption of PM to

stabilise, as explained in Section 3.5). Finally, I set for each simulation the

SIMULATION LIMIT parameter to the average execution time obtained in the

real benchmark executions.

Results

I display in Table 6.3 the MAE and NRMSE of the energy values obtained

from CloudSim and GroudSim/DISSECT-CF compared with real measure-

110 CHAPTER 6. INTEGRATION INTO SIMULATORS

Simulator Dataset MAE NRMSE
live [kWh] live [%]

GroudSim/ (m01, m02) 0.0025 9
DISSECT-CF (o1, o2) 0.0024 25.6

CloudSim (m01, m02) 0.0190 45.9
(o1, o2) 0.0075 68

Table 6.3: GroudSim/DISSECT-CF vs CloudSim comparison.

ments. Since the energy simulation in CloudSim refers to the entire data

centre, I compare its prediction with the sum of the energy consumption of

the hosts. I only compare the results of the benchmarks that use live migra-

tion since CloudSim does not support the non-live one. I observe that using

my simulation in GroudSim/DISSECT-CF reduces the NRMSE compared

to CloudSim by 36.9% on the (m01, m02) machine set (i.e. 45.9% versus

9%), and by 42.4% on the (o1, o2) machine set (i.e. 68% versus 25.6%). I

also notice that GroudSim/DISSECT-CF has a lower MAE for both data

sets, showing a lower variance compared to CloudSim. I further observe that

most errors in CloudSim are due to underestimation. Therefore, the better

results are explained not only by the improved accuracy in the CPU model,

but also by considering the energy consumption of subsystems ignored by

CloudSim such as networking and storage, and the energy overhead of VM

migration and the dirtying ratio of each workload. Considering this pa-

rameter in GroudSim/DISSECT-CF brings a significant improvement in the

accuracy of prediction as shown in [92] because migrating a VM with high

dirtying ratio can even double the migration time, which has a high impact

on energy consumption.

6.5 Summary

In this chapter, I have shown the implementation details of my model and

its validation, comparing it with real measurements and a state-of-the-art

Cloud simulator like CloudSim. The results shown in this phase support

the fact that current state-of-the-art simulator do not provide an accurate

6.5. SUMMARY 111

model for VM migration. Due to the energy consumption of this activity and

its importance for VM consolidation, I conclude that more accurate energy

modelling for this activity is needed. I propose then a model for energy

consumption of VM migration taking into account different power phases, as

well as all the involved actors and different hardware components, showing

that with my model I am able to increase the accuracy that current models

provide.

112 CHAPTER 6. INTEGRATION INTO SIMULATORS

Chapter 7

Conclusion and future work

7.1 Contributions

In this section I summarise the final contribution of this work, according to

the different research areas touched during this work.

7.1.1 Energy model

In Chapter 2 I described the theoretical model and all the foundational as-

pects behind my work. First, I provided a brief introduction of what is a data

centre in my scenario and then discussed virtualization and all the issues that

are related to it. Afterwards, I defined what is a VM and introduced a model

of the system load. Afterwards, a big part of this chapter focused on VM

migration and (1) the VM migration approaches on which the thesis focuses,

(2) the actors involved in the migration process and (3) the definition of the

energy phases identified during VM migration. Afterwards, I described the

energy model of each data centre component, more precisely CPU, network

and storage. On top of these models, I built a model for VM migration. The

model consists of two parts: the energy model and the runtime model. The

energy model is defined for each one of the energy phases that I previously

identified, and related to the resource utilisation of the main actors involved

in the VM migration. Afterwards, I defined a model for VM migration run-

time.

113

114 CHAPTER 7. CONCLUSION AND FUTURE WORK

7.1.2 Network modelling

In Chapter 4, my research efforts concerning the modelling of energy con-

sumption of network transfers are discussed. First, I introduced NNETS,

a versatile network benchmarking tool offering eight configuration parame-

ters, some not covered by existing tools (e.g. variable traffic patterns, full

duplex connections). Second, I designed a set of benchmarks and evaluated

the energy efficiency of the NICs’ software stacks in different configurations

covering a wide spectrum of possible application behaviours. Third, I in-

troduced energy models capable of providing accurate estimations based on

the NIC type of adapter and transfer characteristics including payload size,

connection concurrency and traffic patterns with an average error of 6.1%.

Fourth, I tested the accuracy of my model in predicting energy consump-

tion of a non-live VM migration process, obtaining an average error of 9.8%.

Fifth, I proposed a set of guidelines for choosing the most energy efficient

NIC.

7.1.3 VM migration modelling

In Chapter 5, I validated a new energy model for VM migration. I consid-

ered the impact of workloads running on different actors and identified how

much their load impacts the energy consumption of VM migration. Then,

I compared the accuracy of my model versus other state-of-the-art models

that do not consider it. I quantified how much each actor’s workload influ-

ences VM migration energy-wise. My results demonstrated an improvement

up to 24% in accuracy, showing that the workload impact on VM migration

cannot be ignored when predicting its energy consumption. As a result, em-

ploying my model can significantly improve energy efficiency through VM

consolidation. For example, one may think not to consolidate a VM with an

high dirtying ratio to a PM that is running many VMs running CPU inten-

sive workloads since this increases the energy consumption of VM migration.

The other models considered in this work do not take into account impact

of workloads running on the target host and therefore, may not be able to

provide the same accuracy in predictions. Such a model could also be easily

7.2. FUTURE WORK 115

integrated in Cloud simulators to provide more accurate estimation of energy

consumption in data centres. I plan to extend this work by also considering

the impact of network and storage-intensive workloads.

7.1.4 Integration into simulation

In Chapter 6, I evaluated my model’s accuracy using traces collected from

two different types of PMs in a private Cloud, showing a relative error lower

than 18% on both data sets. Afterwards, I implemented the model in the

user-side GroudSim simulator by exploiting its integration with DISSECT-

CF infrastructure simulator. I evaluated the accuracy of my implementation

by comparing it with real measurements, showing a NRMSE between 8%

and 22% for power prediction and between 8% and 25.6% for energy estima-

tion. Finally, I compared the results obtained by my implementation with

the CloudSim state-of-the-art simulator showing an improvement of at least

36.8% in energy prediction accuracy. In the future, I plan to perform fur-

ther extensions to the simulator by improving the energy models for network

and storage and use them for studying the effects of different energy-aware

consolidation algorithms in modern virtualized data centres. I am further

interested in validating the simulator with different real-world benchmarks

such as TPC-C1 or SPECPower2.

7.2 Future work

7.2.1 Virtualization

Regardless of the modelling of PMs, there are several functionalities intro-

duced by the virtualization layer that need to be considered to improve exist-

ing simulators. There are different types of virtualization, but in this section

I only focus on the ones that are more of interest for Cloud computing: OS-

level virtualization and container-based virtualization. Then, I consider the

1http://www.tpc.org/tpcc/
2https://www.spec.org/benchmarks.html#power

http://www.tpc.org/tpcc/
https://www.spec.org/benchmarks.html#power

116 CHAPTER 7. CONCLUSION AND FUTURE WORK

capability of performing overcommitment, which is widely used in virtualized

data centres to increase resource utilization, thus reducing energy consump-

tion. Finally, I focus on the migration feature, offered by many modern

hypervisors that allows to dynamically reallocate load inside the data centre

and to take more energy efficient decisions.

Resource overcommitment

Several papers proposed models for data centre energy consumptions, how-

ever, they either focus on a specific CPU architecture [35] or assume a linear

relationship between CPU usage and energy consumption [56], which may

lead to inaccurate results [40]. VM migration’s [107] energy consumption has

been modelled in many different works [109, 110], but none them considers

over-commitment and the impact of different data centre actors on energy

consumption as done by [92], and have not been implemented in a simula-

tor. Resource overcommitment consists of allocating to VMs more resources

than available on the PMs. The main advantage of using this technique is

that utilisation of PMs, and consequently their energy efficiency, is increased.

To ensure that each VM gets a fair share of the resources, smart resource

scheduling mechanisms are needed, such as the credit scheduler in Xen [86].

Models for resource overcommitment have been proposed by [111, 112]. How-

ever, in existing simulators like CloudSim [33] the only possibility to perform

overcommitment is to manually specify the maximum amount of resources

that each VM gets. To further improve accuracy, simulators should imple-

ment such resource allocation algorithms and provide an accurate simulation

of their effects on energy consumption and VMs performance.

VM migration

VM migration’s [107] energy consumption has been modelled in many dif-

ferent works [109, 110]. Efforts for implementing VM migration models in

simulation have been made by CloudSim [33] and SimGrid [113] but they

either (1) consider only non-live migration, (2) do not consider effects on

performance of the VM migration or (3) do not consider energy consumption

7.3. DISCUSSION 117

of the VM migration. Some works like [92] consider overcommitment and

the impact of different data centre actors on energy consumption, but at the

moment of writing no implementation in a Cloud simulator exists. Due to its

impact on data centre performance and energy consumption, implementing

such models in Cloud simulators will for sure increase accuracy of existing

simulations.

Container-based virtualization

Container-based virtualization has recently emerged in modern data centres,

thanks to technologies like Docker3, OpenVZ4 and LXC5. In this type of vir-

tualization, the guest OS runs as application inside the OS. This reduces the

overhead introduced by the hypervisor and eliminates the additional soft-

ware layers between OS and hardware. Recent works started investigating

the advantages of using containers in place of VMs. In [114] an extensive per-

formance comparison of VMs and containers is performed. In [115] further

analysis of the advantages of using containers instead of VMs is performed.

In [116] Docker containers are used for workflow execution on Clouds, show-

ing their applicability to scientific applications. According to these prelimi-

nary results, containers seem to be a promising alternative to VMs for high-

performance computing in the Cloud, since they provide virtualization with

a lower overhead compared to the typical OS-based virtualization. However,

at the moment no simulator supports this virtualization technique. Pro-

viding to the distributed systems community the possibility to simulate the

container-based virtualization technology would enable scientists to choose

which kind of virtualization better suits their applications.

7.3 Discussion

According to my analysis, none of the existing simulators is able to capture

all the aspects of data centre behaviour. For example, GreenCloud is more

3http://www.docker.com
4http://www.openvz.org
5http://www.linuxcontainers.org

http://www.docker.com
http://www.openvz.org
http://www.linuxcontainers.org

118 CHAPTER 7. CONCLUSION AND FUTURE WORK

focused on network simulations, but it does not provide an accurate support

to the virtualization infrastructure, especially concerning VM migration and

hypervisor’s behaviour. Moreover, it does not provide support for overcom-

mitment at the time of writing. According to my analysis, the simulators

providing more features are CloudSim and SimGrid, but they still miss many

important ones. For example, CloudSim provides energy modelling, but it

does not provide the same flexibility as SimGrid in defining applications.

Moreover, there are many aspects that are often not considered, such as (1)

different hypervisors’ behaviour, (2) resource overcommitment and (3) mem-

ory behavior, including swapping. All these aspects must be considered for

an accurate energy modelling. Moreover, at the time of writing, there is no

data centre simulator that is considering the possibility to have container-

based virtualization. Container-based virtualization is an alternative to the

typical VM-based virtualization, where Linux containers are used instead of

VMs. At the moment there is no simulator for running container-based vir-

tualization. Providing the capability of accurately simulating this type of

virtualization would give the possibility to assess the best type of virtual-

ization (VM or container-based) for different application scenarios. Finally,

very little attention is paid to validation of the simulators. Therefore, in the

future I plan to focus my research in the following areas:

• Improving accuracy of physical modelling;

• Support of different types of virtualization, including container-based

virtualization;

• Providing more detailed models of overcommitment;

• Improving accuracy of VM migration modelling;

• Providing the user with a general validation framework.

List of Figures

2.1 Summary of the migration process. 26

2.2 Energy consumption phases of non-live and live migration. . . 27

2.3 Instantaneous power consumption of a host in relation to CPU

utilization. 31

3.1 Code instrumentation framework. 50

3.2 Example of usage of the code instrumentation framework. . . . 50

3.3 PATTERN benchmark (burst/throttle intervals). 51

4.1 PSIZE benchmark results. 72

4.2 n-UPLEX benchmark results. 74

4.3 PATTERN benchmark results. 75

5.1 CPULOAD-SOURCE results. 82

5.2 CPULOAD-TARGET results. 84

5.3 MEMLOAD-VM results. 85

5.4 MEMLOAD-SOURCE results 86

5.5 MEMLOAD-TARGET results 87

6.1 GroudSim architecture. 98

6.2 DISSECT-CF architecture. 99

6.3 Interaction between GroudSim and DISSECT-CF. 100

6.4 Results for the (m01, m02) machine set. 107

6.5 Results for the (o1, o2) machine set. 108

119

120 LIST OF FIGURES

List of Tables

2.1 Hypervisors summary. 20

3.1 Comparison of networking benchmarking/diagnosis tools. . . . 52

3.2 Workload impact on VM migration according to the hosting

actor. 56

3.3 Experimental hardware. 60

3.4 Benchmark summary with focus metric in bold. 62

3.5 Experimental setup. 64

4.1 BASE benchmark results (I). 69

4.2 BASE benchmark results (II). 70

4.3 Variation of relevant metrics with number of concurrent con-

nections. 74

4.4 Model parameters and error. 76

4.5 Non-live migration model parameters and errors. 77

4.6 Guidelines for NIC selection depending on communication char-

acteristics. 78

5.1 Coefficients for non-live migration. 88

5.2 Coefficients for live migration. 88

5.3 Normalised root mean square error (NRMSE) of my model on

the two datasets. 88

5.4 Training phase coefficients for LIU, HUANG and STRUNK

models, calculated for the PM sets m01-m02 and o1-o2. 91

5.5 Comparison of WAVM3 with other models on dataset m01-m02. . 91

121

122 LIST OF TABLES

6.1 Model coefficients and errors. 97

6.2 Error for the selected machine sets. 105

6.3 GroudSim/DISSECT-CF vs CloudSim comparison. 110

Bibliography

[1] Gabor Kecskemeti. Dissect-cf: A simulator to foster energy-aware

scheduling in infrastructure clouds. Simulation Modelling Practice and

Theory, 58, Part 2:188 – 218, 2015. Special issue on Cloud Simulation.

[2] L.A. Barroso and U. Holzle. The case for energy-proportional comput-

ing. Computer, 40(12):33–37, Dec 2007.

[3] Chandra Chekuri and Sanjeev Khanna. On multidimensional packing

problems. SIAM J. Comput., 33(4):837–851, Apr 2004.

[4] V. Shrivastava, P. Zerfos, K. w. Lee, H. Jamjoom, Y. H. Liu, and

S. Banerjee. Application-aware virtual machine migration in data cen-

ters. In INFOCOM ’11, pages 66–70. IEEE, 2011.

[5] J. W. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang. Joint vm

placement and routing for data center traffic engineering. In INFOCOM

’12, pages 2876–2880. IEEE, 2012.

[6] Y. Guo, A. L. Stolyar, and A. Walid. Shadow-routing based dynamic

algorithms for virtual machine placement in a network cloud. In IN-

FOCOM ’13, pages 620–628. IEEE, 2013.

[7] Z. Xiao, W. Song, and Q. Chen. Dynamic resource allocation using

virtual machines for cloud computing environment. Transactions on

Parallel and Distributed Systems, 24(6):1107–1117, 2013.

[8] H. Xu and B. Li. Anchor: A versatile and efficient framework for

resource management in the cloud. Transactions on Parallel and Dis-

tributed Systems, 24(6):1066–1076, 2013.

123

124 BIBLIOGRAPHY

[9] Weiwei Fang, Xiangmin Liang, Shengxin Li, Luca Chiaraviglio, and

Naixue Xiong. Vmplanner: Optimizing virtual machine placement and

traffic flow routing to reduce network power costs in cloud data centers.

Computer Networks, 57(1):179–196, Jan 2013.

[10] M. Alicherry and T. V. Lakshman. Optimizing data access latencies in

cloud systems by intelligent virtual machine placement. In INFOCOM

’13, pages 647–655. IEEE, 2013.

[11] K. Zheng, X. Wang, L. Li, and X. Wang. Joint power optimization of

data center network and servers with correlation analysis. In INFO-

COM ’14, pages 2598–2606. IEEE, 2014.

[12] L. Chen and H. Shen. Consolidating complementary vms with

spatial/temporal-awareness in cloud datacenters. In INFOCOM ’14,

pages 1033–1041, 2014.

[13] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen,

Eric Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. Live

migration of virtual machines. In NSDI’05, pages 273–286. USENIX.

[14] A Strunk and W. Dargie. Does live migration of virtual machines cost

energy? In AINA ’13, pages 514–521. IEEE, 2013.

[15] K. Rybina, W. Dargie, A. Strunk, and A. Schill. Investigation into the

energy cost of live migration of virtual machines. In SustainIT ’13,

pages 1–8. IEEE, Oct 2013.

[16] Qiang Huang, Fengqian Gao, Rui Wang, and Zhengwei Qi. Power

consumption of virtual machine live migration in clouds. In CMC’11,

pages 122–125. IEEE, 2011.

[17] Haikun Liu, Cheng-Zhong Xu, Hai Jin, Jiayu Gong, and Xiaofei Liao.

Performance and energy modeling for live migration of virtual ma-

chines. In HPDC ’11, pages 171–182. ACM, 2011.

BIBLIOGRAPHY 125

[18] Anja Strunk. A lightweight model for estimating energy cost of live

migration of virtual machines. In CLOUD ’13, pages 510–517. IEEE,

June 2013.

[19] Qiang Huang, Fengqian Gao, Rui Wang, and Zhengwei Qi. Power

consumption of virtual machine live migration in clouds. In CMC ’11,

pages 122–125. IEEE, April 2011.

[20] N. Bobroff, A. Kochut, and K. Beaty. Dynamic placement of virtual

machines for managing sla violations. In INM ’07, pages 119–128.

IFIP/IEEE, 2007.

[21] X. Meng, V. Pappas, and L. Zhang. Improving the scalability of data

center networks with traffic-aware virtual machine placement. In IN-

FOCOM ’10, pages 1–9. IEEE, 2010.

[22] H. Liu and B. He. Vmbuddies: Coordinating live migration of multi-

tier applications in cloud environments. Transactions on Parallel and

Distributed Systems, 26(4):1192–1205, 2015.

[23] Dennis Abts, Michael R. Marty, Philip M. Wells, Peter Klausler, and

Hong Liu. Energy proportional datacenter networks. SIGARCH Com-

put. Archit. News, 38(3):338–347, Jun 2010.

[24] Lei Huang, Qin Jia, Xin Wang, Shuang Yang, and Baochun Li. Pcube:

Improving power efficiency in data center networks. In CLOUD ’11,

pages 65–72. IEEE, 2011.

[25] Dzmitry Kliazovich, Pascal Bouvry, and Samee Ullah Khan.

Dens: Data center energy-efficient network-aware scheduling. In

GREENCOM-CPSCOM ’10, pages 69–75. IEEE, 2010.

[26] Sergiu Nedevschi, Lucian Popa, Gianluca Iannaccone, Sylvia Rat-

nasamy, and David Wetherall. Reducing network energy consump-

tion via sleeping and rate-adaptation. In NSDI ’08, pages 323–336.

USENIX, 2008.

126 BIBLIOGRAPHY

[27] Hang-Sheng Wang, Li-Shiuan Peh, and S. Malik. A power model for

routers: modeling alpha 21364 and infiniband routers. In High Per-

formance Interconnects, 2002. Proceedings. 10th Symposium on, pages

21–27. IEEE, 2002.

[28] P. Alonso, R.M. Badia, J. Labarta, M. Barreda, M.F. Dolz, R. Mayo,

E.S. Quintana-Orti, and R. Reyes. Tools for power-energy modelling

and analysis of parallel scientific applications. In ICPP ’12, pages 420–

429, 2012.

[29] Barry Rountree, David K. Lowenthal, Shelby Funk, Vincent W. Freeh,

Bronis R. de Supinski, and Martin Schulz. Bounding energy consump-

tion in large-scale mpi programs. SC ’07, pages 49:1–49:9. ACM, 2007.

[30] Siddhartha Jana, Oscar Hernandez, Stephen Poole, and Barbara Chap-

man. Power consumption due to data movement in distributed pro-

gramming models. In Euro-Par ’14, volume 8632, pages 366–378.

Springer International Publishing, 2014.

[31] T. Hirofuchi, A. Lebre, and L. Pouilloux. Adding a live migration model

into simgrid: One more step toward the simulation of infrastructure-

as-a-service concerns. In 5th International Conference on Cloud Com-

puting Technology and Science, volume 1, pages 96–103, 2013.

[32] Henri Casanova, Arnaud Legrand, and Martin Quinson. Simgrid: A

generic framework for large-scale distributed experiments. In P2P ’09,

pages 126–131. IEEE, 2009.

[33] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, Cesar A. F. De

Rose, and Rajkumar Buyya. Cloudsim: A toolkit for modeling and

simulation of cloud computing environments and evaluation of resource

provisioning algorithms. Software: Practice and Experience, 41(1):23–

50, January 2011.

[34] Albert Greenberg, James Hamilton, David A. Maltz, and Parveen Pa-

tel. The cost of a cloud: Research problems in data center networks.

SIGCOMM Comput. Commun. Rev., 39(1):68–73, December 2008.

BIBLIOGRAPHY 127

[35] Yiyu Chen, Amitayu Das, Wubi Qin, Anand Sivasubramaniam, Qian

Wang, and Natarajan Gautam. Managing server energy and opera-

tional costs in hosting centers. SIGMETRICS Perform. Eval. Rev.,

33(1):303–314, Jun 2005.

[36] P. Gschwandtner, M. Knobloch, B. Mohr, D. Pleiter, and T. Fahringer.

Modeling cpu energy consumption of hpc applications on the ibm

power7. In Parallel, Distributed and Network-Based Processing (PDP),

2014 22nd Euromicro International Conference on, pages 536–543, Feb

2014.

[37] Yakun Sophia Shao and David Brooks. Energy characterization and

instruction-level energy model of intel’s xeon phi processor. In Proceed-

ings of the 2013 International Symposium on Low Power Electronics

and Design, ISLPED ’13, pages 389–394, Piscataway, NJ, USA, 2013.

IEEE Press.

[38] James Hamilton. Internet-scale service infrastructure efficiency.

SIGARCH Comput. Archit. News, 37(3):232–232, June 2009.

[39] Suzanne Rivoire, Parthasarathy Ranganathan, and Christos Kozyrakis.

A comparison of high-level full-system power models. In Proceedings

of the 2008 Conference on Power Aware Computing and Systems, Hot-

Power’08, pages 3–3, Berkeley, CA, USA, 2008. USENIX Association.

[40] A.-C. Orgerie, L. Lefevre, and J.-P. Gelas. Demystifying energy con-

sumption in grids and clouds. In Green Computing Conference, 2010

International, pages 335–342, 2010.

[41] David Wang, Brinda Ganesh, Nuengwong Tuaycharoen, Kathleen

Baynes, Aamer Jaleel, and Bruce Jacob. Dramsim: A memory system

simulator. SIGARCH Comput. Archit. News, 33(4):100–107, November

2005.

[42] Y. Kim, W. Yang, and O. Mutlu. Ramulator: A fast and extensible

dram simulator. Computer Architecture Letters, PP(99):1–1, 2015.

128 BIBLIOGRAPHY

[43] Carl A. Waldspurger. Memory resource management in vmware esx

server. SIGOPS Oper. Syst. Rev., 36(SI):181–194, December 2002.

[44] Guilin Zhang, Huiqiang Wang, L.V. Hongwu, Guangsheng Feng, and

Zhanbo He. A dynamic memory management model on xen virtual

machine. In Mechatronic Sciences, Electric Engineering and Computer

(MEC), Proceedings 2013 International Conference on, pages 1609–

1613, 2013.

[45] Irfan Habib. Virtualization with kvm. Linux J., 2008(166), February

2008.

[46] Qingbo Zhu, Francis M. David, Christo F. Devaraj, Zhenmin Li,

Yuanyuan Zhou, and Pei Cao. Reducing energy consumption of

disk storage using power-aware cache management. In The 10th In-

ternational Conference on High-Performance Computer Architecture

(HPCA-10), pages 118–129, 2004.

[47] David P. Helmbold, Darrell D. E. Long, and Bruce Sherrod. A dy-

namic disk spin-down technique for mobile computing. In Proceedings

of the 2Nd Annual International Conference on Mobile Computing and

Networking, MobiCom ’96, pages 130–142, New York, NY, USA, 1996.

ACM.

[48] D. Colarelli and D. Grunwald. Massive arrays of idle disks for storage

archives. In Supercomputing, ACM/IEEE 2002 Conference, pages 47–

47, 2002.

[49] P.M. Greenawalt. Modeling power management for hard disks. In Mod-

eling, Analysis, and Simulation of Computer and Telecommunication

Systems, 1994., MASCOTS ’94., Proceedings of the Second Interna-

tional Workshop on, pages 62–66, 1994.

[50] Reem Alshahrani and Hassan Peyravi. Modeling and simulation of data

center networks. In Proceedings of the 2Nd ACM SIGSIM Conference

on Principles of Advanced Discrete Simulation, SIGSIM PADS ’14,

pages 75–82, New York, NY, USA, 2014. ACM.

BIBLIOGRAPHY 129

[51] Nongda Hu, Binzhang Fu, Xiufeng Sui, Long Li, Tao Li, and Lixin

Zhang. Dcnsim: A unified and cross-layer computer architecture sim-

ulation framework for data center network research. In Proceedings of

the ACM International Conference on Computing Frontiers, CF ’13,

pages 19:1–19:9, New York, NY, USA, 2013. ACM.

[52] Hiroki Shirayanagi, Hiroshi Yamada, and Kenji Kono. Honeyguide: A

vm migration-aware network topology for saving energy consumption

in data center networks. 2014 IEEE Symposium on Computers and

Communications (ISCC), 0:000460–000467, 2012.

[53] Yueping Zhang, Ao-Jan Su, and Guofei Jiang. Evaluating the im-

pact of data center network architectures on application performance

in virtualized environments. In Quality of Service (IWQoS), 2010 18th

International Workshop on, pages 1–5, June 2010.

[54] Vincenzo De Maio, Vlad Nae, and Radu Prodan. Evaluating energy

efficiency of gigabit ethernet and infiniband software stacks in data

centres. In Proceedings of the 7th IEEE/ACM International Conference

on Utility and Cloud Computing (UCC 2014). IEEE Computer Society,

2014.

[55] A.-C. Orgerie, L. Lefevre, I. Guerin-Lassous, and D.M.L. Pacheco.

Ecofen: An end-to-end energy cost model and simulator for evaluating

power consumption in large-scale networks. In World of Wireless, Mo-

bile and Multimedia Networks (WoWMoM), 2011 IEEE International

Symposium on a, pages 1–6, 2011.

[56] Steven Pelley, David Meisner, Thomas F Wenisch, and James W

VanGilder. Understanding and abstracting total data center power.

Workshop on Energy-Efficient Design, 2009.

[57] Toni Mastelic, Ariel Oleksiak, Holger Claussen, Ivona Brandic, Jean-

Marc Pierson, and Athanasios V. Vasilakos. Cloud computing: Survey

on energy efficiency. ACM Comput. Surv., 47(2):33:1–33:36, December

2014.

130 BIBLIOGRAPHY

[58] Aman Kansal, Feng Zhao, Jie Liu, Nupur Kothari, and Arka A. Bhat-

tacharya. Virtual machine power metering and provisioning. In Pro-

ceedings of the 1st ACM Symposium on Cloud Computing, SoCC ’10,

pages 39–50, New York, NY, USA, 2010. ACM.

[59] Mansoor Alicherry and T. V. Lakshman. Network aware resource allo-

cation in distributed clouds. In INFOCOM ’12, pages 963–971. IEEE,

2012.

[60] Brandon Heller, Srinivasan Seetharaman, Priya Mahadevan, Yiannis

Yiakoumis, Puneet Sharma, Sujata Banerjee, and Nick McKeown.

Elastictree: Saving energy in data center networks. In NSDI ’10, pages

249–264. USENIX, 2010.

[61] Yunfei Shang, Dan Li, and Mingwei Xu. Energy-aware routing in data

center network. In SIGCOMM ’10 workshop on Green networking,

pages 1–8. ACM, 2010.

[62] Haijin Yan, Scott A. Watterson, David K. Lowenthal, Kang Li, Rupa

Krishnan, and Larry L. Peterson. Client-centered, energy-efficient wire-

less communication on ieee 802.11b networks. Transactions on Mobile

Computing, 5(11):1575–1590, 2006.

[63] Maruti Gupta and Suresh Singh. Greening of the internet. In SIG-

COMM ’03, pages 19–26. ACM, 2003.

[64] J. Chabarek, J. Sommers, P. Barford, C. Estan, D. Tsiang, and

S. Wright. Power awareness in network design and routing. In IN-

FOCOM ’08, pages 457–465. IEEE, 2008.

[65] Q. Wang, M. Hempstead, and W. Yang. A realistic power consumption

model for wireless sensor network devices. In SAHCN ’06, volume 1,

pages 286–295, 2006.

[66] L. M. Feeney and M. Nilsson. Investigating the energy consumption of

a wireless network interface in an ad hoc networking environment. In

INFOCOM ’01, volume 3, pages 1548–1557, 2001.

BIBLIOGRAPHY 131

[67] Jayant Baliga, Robert Ayre, Kerry Hinton, Wayne V. Sorin, and Rod-

ney S. Tucker. Energy consumption in optical ip networks. J. Lightwave

Technol., 27(13):2391–2403, Jul 2009.

[68] J. Chan and S. Parameswaran. Nocee: energy macro-model extraction

methodology for network on chip routers. In ICCAD ’05, pages 254 –

259. ACM, 2005.

[69] A.-C. Orgerie, L. Lefevre, I. Guerin-Lassous, and D.M.L. Pacheco.

Ecofen: An end-to-end energy cost model and simulator for evaluating

power consumption in large-scale networks. In WoWMoM, pages 1–6.

IEEE, 2011.

[70] Wei Deng, Hai Jin, Xiaofei Liao, Fangming Liu, Li Chen, and Haikun

Liu. Lifetime or energy: Consolidating servers with reliability control

in virtualized cloud datacenters. In CloudCom ’12, pages 18–25. IEEE

Computer Society, 2012.

[71] Jen-Cheng Huang, Hsien-Hsin S. Lee, and Mohammad M. Hossain.

Migration energy-aware workload consolidation in enterprise clouds.

In CloudCom ’12, pages 405–410. IEEE, 2012.

[72] Richa Sinha, Nidhi Purohit, and Hiteishi Diwanji. Energy efficient

dynamic integration of thresholds for migration at cloud data centers.

IJCA Special Issue on Communication and Networks, (1):44–49, Dec

2011.

[73] Anton Beloglazov and Rajkumar Buyya. Optimal online deterministic

algorithms and adaptive heuristics for energy and performance efficient

dynamic consolidation of virtual machines in cloud data centers. Con-

curr. Comput. : Pract. Exper., 24(13):1397–1420, Sep 2012.

[74] William Voorsluys, James Broberg, Srikumar Venugopal, and Rajku-

mar Buyya. Cost of virtual machine live migration in clouds: A perfor-

mance evaluation. In CloudCom ’09, pages 254–265. Springer-Verlag,

2009.

132 BIBLIOGRAPHY

[75] S. Akoush, R. Sohan, A Rice, AW. Moore, and A Hopper. Predicting

the performance of virtual machine migration. In MASCOTS ’10, pages

37–46. IEEE, Aug 2010.

[76] Akshat Verma, Gautam Kumar, Ricardo Koller, and Aritra Sen. Cos-

mig: Modeling the impact of reconfiguration in a cloud. In MASCOTS

’11, pages 3–11. IEEE, 2011.

[77] Kateryna Rybina, Abhinandan Patni, and Alexander Schill. Analysing

the migration time of live migration of multiple virtual machines. In

CLOSER ’14, pages 590–597. Scitepress, 2014.

[78] W. Dargie. Estimation of the cost of vm migration. In ICCCN ’14,

pages 1–8, Aug 2014.

[79] A Strunk. Costs of virtual machine live migration: A survey. In SER-

VICES ’12, pages 323–329. IEEE, June 2012.

[80] Dzmitry Kliazovich, Pascal Bouvry, and SameeUllah Khan. Green-

cloud: a packet-level simulator of energy-aware cloud computing data

centers. The Journal of Supercomputing, 62(3):1263–1283, 2012.

[81] Michael Tighe, Gastón Keller, Michael Bauer, and Hanan Lutfiyya. Dc-

sim: A data centre simulation tool for evaluating dynamic virtualized

resource management. In CNSM ’12, pages 385–392. IEEE, 2012.

[82] Simon Ostermann, Kassian Plankensteiner, and Radu Prodan. Us-

ing a new event-based simulation framework for investigating resource

provisioning in clouds. Scientific Programming, 19(2-3):161–178, 2011.

[83] Simon Ostermann, Kassian Plankensteiner, Radu Prodan, Thomas

Fahringer, and Alexandru Iosup. Workflow monitoring and analysis

tool for ASKALON. In CoreGRID ’08, pages 1–14, 2008.

[84] Gabor Kecskemeti, Simon Ostermann, and Radu Prodan. Fostering

energy-awareness in simulations behind scientific workflow manage-

ment systems. In Proceedings of the 7th IEEE/ACM International Con-

BIBLIOGRAPHY 133

ference on Utility and Cloud Computing, UCC 2014, London, United

Kingdom, December 8-11, 2014, pages 29–38, 2014.

[85] A. Nuñez, J. L. Vázquez-Poletti, A. C. Caminero, J. Carretero, and

I. M. Llorente. Design of a new cloud computing simulation platform.

In Proceedings of the 2011 International Conference on Computational

Science and Its Applications - Volume Part III, ICCSA’11, pages 582–

593, Berlin, Heidelberg, 2011. Springer-Verlag.

[86] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,

Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and

the art of virtualization. SIGOPS Oper. Syst. Rev., 37(5):164–177,

October 2003.

[87] Brian Walters. Vmware virtual platform. Linux J., 1999(63es), July

1999.

[88] Michael R. Hines, Umesh Deshpande, and Kartik Gopalan. Post-copy

live migration of virtual machines. SIGOPS Oper. Syst. Rev., 43(3):14–

26, Jul 2009.

[89] Fabien Hermenier, Xavier Lorca, Jean-Marc Menaud, Gilles Muller,

and Julia Lawall. Entropy: A consolidation manager for clusters. In

VEE ’09, pages 41–50. ACM.

[90] Akshat Verma, Puneet Ahuja, and Anindya Neogi. pmapper: power

and migration cost aware application placement in virtualized systems.

In Middleware ’08, pages 243–264. Springer-Verlag, 2008.

[91] Aziz. Murtazaev and Sangyoon. Oh. Sercon: Server Consolidation

Algorithm using Live Migration of Virtual Machines for Green Com-

puting. volume 28, pages 212–231. Taylor & Francis online, 2011.

[92] Vincenzo De Maio, Gabor Kecskemeti, and Radu Prodan. A workload-

aware energy model for virtual machine migration. In CLUSTER ’15.

IEEE, 2015.

134 BIBLIOGRAPHY

[93] Yaniv Ben-Itzhak, Israel Cidon, and Avinoam Kolodny. Performance

and power aware cmp thread allocation modeling. In HiPEAC’10,

pages 232–246. Springer-Verlag, 2010.

[94] The problem of power consumption in servers. https:

//software.intel.com/sites/default/files/m/d/4/1/d/8/

power_consumption.pdf. Accessed: 2016-03-06.

[95] Robert Basmadjian, Nasir Ali, Florian Niedermeier, Hermann de Meer,

and Giovanni Giuliani. A methodology to predict the power consump-

tion of servers in data centres. In e-Energy ’11, pages 1–10. ACM,

2011.

[96] Adam Wade Lewis, Nian-Feng Tzeng, and Soumik Ghosh. Runtime

energy consumption estimation for server workloads based on chaotic

time-series approximation. Trans. Archit. Code Optim., 9(3):15:1–

15:26, Oct 2012.

[97] Theophilus Benson, Aditya Akella, and David A. Maltz. Network traffic

characteristics of data centers in the wild. In IMC ’10, pages 267–280.

ACM, 2010.

[98] Gong Chen, Wenbo He, Jie Liu, Suman Nath, Leonidas Rigas, Lin

Xiao, and Feng Zhao. Energy-aware server provisioning and load dis-

patching for connection-intensive internet services. In NSDI’08, pages

337–350. USENIX, 2008.

[99] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le.

Rapl: Memory power estimation and capping. In Low-Power Electron-

ics and Design (ISLPED), 2010 ACM/IEEE International Symposium

on, pages 189–194, 2010.

[100] J. Chu and V. Kashyap. Transmission of IP over InfiniBand (IPoIB).

RFC 4391, 2006.

[101] V. Kashyap. IP over InfiniBand: Connected Mode. RFC 4755, 2006.

https://software.intel.com/sites/default/files/m/d/4/1/d/8/power_consumption.pdf
https://software.intel.com/sites/default/files/m/d/4/1/d/8/power_consumption.pdf
https://software.intel.com/sites/default/files/m/d/4/1/d/8/power_consumption.pdf

BIBLIOGRAPHY 135

[102] W. Li, H. Yang, Z. Luan, and D. Qian. Energy prediction for mapreduce

workloads. In DASC ’11, pages 443–448, Dec 2011.

[103] A-C. Orgerie, L. Lefevre, and J.-P. Gelas. Demystifying energy con-

sumption in grids and clouds. In IGCC ’10, pages 335–342, Aug 2010.

[104] Faraz Ahmad and T. N. Vijaykumar. Joint optimization of idle

and cooling power in data centers while maintaining response time.

SIGARCH Comput. Archit. News, 38(1):243–256, Mar 2010.

[105] Jyothi Sekhar, Getzi Jeba, and S. Durga. A survey on energy efficient

server consolidation through vm live migration. IJAET, 5:515–525,

November 2012.

[106] Gabor Kecskemeti. DISSECT-CF: a simulator to foster energy-aware

scheduling in infrastructure clouds. Simulation Modelling Practice and

Theory, 58P2:188–218, November 2015.

[107] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen,

Eric Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. Live

migration of virtual machines. In Proceedings of the 2Nd Conference on

Symposium on Networked Systems Design & Implementation - Volume

2, NSDI’05, pages 273–286, 2005.

[108] Anton Beloglazov, Jemal Abawajy, and Rajkumar Buyya. Energy-

aware resource allocation heuristics for efficient management of data

centers for cloud computing. Future Gener. Comput. Syst., 28(5):755–

768, May 2012.

[109] Haikun Liu, Hai Jin, Cheng-Zhong Xu, and Xiaofei Liao. Performance

and energy modeling for live migration of virtual machines. Cluster

Computing, 16(2):249–264, 2013.

[110] Anja Strunk. A lightweight model for estimating energy cost of live

migration of virtual machines. In 2013 IEEE Sixth International Con-

ference on Cloud Computing, Santa Clara, CA, USA, June 28 - July

3, 2013, pages 510–517, 2013.

136 BIBLIOGRAPHY

[111] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes. Efficient data-

center resource utilization through cloud resource overcommitment. In

Computer Communications Workshops (INFOCOM WKSHPS), 2015

IEEE Conference on, pages 330–335, 2015.

[112] Rahul Ghosh and Vijay K. Naik. Biting off safely more than you can

chew: Predictive analytics for resource over-commit in iaas cloud. In

Rong Chang, editor, IEEE CLOUD, pages 25–32. IEEE, 2012.

[113] T. Hirofuchi, A. Lebre, and L. Pouilloux. Adding a live migration model

into simgrid: One more step toward the simulation of infrastructure-

as-a-service concerns. In Cloud Computing Technology and Science

(CloudCom), 2013 IEEE 5th International Conference on, volume 1,

pages 96–103, 2013.

[114] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. An

updated performance comparison of virtual machines and linux con-

tainers. In 2015 IEEE International Symposium on Performance Anal-

ysis of Systems and Software, ISPASS 2015, Philadelphia, PA, USA,

March 29-31, 2015, pages 171–172, 2015.

[115] Stephen Soltesz, Herbert Pötzl, Marc E. Fiuczynski, Andy Bavier, and

Larry Peterson. Container-based operating system virtualization: A

scalable, high-performance alternative to hypervisors. SIGOPS Oper.

Syst. Rev., 41(3):275–287, March 2007.

[116] Wolfgang Gerlach, Wei Tang, Kevin Keegan, Travis Harrison, Andreas

Wilke, Jared Bischof, Mark D’Souza, Scott Devoid, Daniel Murphy-

Olson, Narayan Desai, and Folker Meyer. Skyport: Container-based ex-

ecution environment management for multi-cloud scientific workflows.

In Proceedings of the 5th International Workshop on Data-Intensive

Computing in the Clouds, DataCloud ’14, pages 25–32. IEEE Press,

2014.

	Introduction
	Motivation
	VM consolidation
	VM migration
	Network transfer
	Simulation framework

	Objectives
	VM consolidation
	VM migration
	Network transfer modelling
	Simulation
	Summary

	Outline
	Related Work
	Data centre modelling
	Network transfer modelling
	VM migration modelling
	Cloud simulators

	Model
	Introduction
	Definitions
	Data centres
	Physical machine
	System load model
	Virtualization
	Virtual machine

	VM migration
	Preliminaries

	Energy model
	CPU power model
	Network transfer power model
	Disk power model
	VM migration model

	Runtime modelling
	Summary

	Experimental methodology
	Introduction
	Motivation
	Code instrumentation framework
	Network benchmarking
	Experimental design

	VM migration benchmarking
	Experimental design

	Hardware/software configuration
	Network benchmarks experimental setup
	VM migration experimental setup

	Summary

	Network transfer modelling
	Introduction
	Network hardware and software stack
	Experimental results
	BASE
	PSIZE
	n-UPLEX
	PATTERN
	Model evaluation
	Using network transfer model for VM migration

	Discussion
	Summary

	VM migration modelling
	Introduction
	Experimental results
	CPULOAD-SOURCE
	CPULOAD-TARGET
	MEMLOAD-VM
	MEMLOAD-SOURCE
	MEMLOAD-TARGET
	Regression analysis

	Comparison
	Non-live migration
	Live migration

	Summary

	Integration into simulators
	Motivation
	Model evaluation
	Regression modelling

	Simulation framework
	GroudSim
	DISSECT-CF
	DISSECT-CF energy extensions
	GroudSim/DISSECT-CF

	Evaluation
	Benchmarking results
	Simulation validation
	Simulation results
	CloudSim comparison

	Summary

	Conclusion and future work
	Contributions
	Energy model
	Network modelling
	VM migration modelling
	Integration into simulation

	Future work
	Virtualization

	Discussion

	List of figures
	List of tables
	Bibliography

